skip to main content


Search for: All records

Creators/Authors contains: "Moussad, Bernard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Protein language models (pLMs) trained on a large corpus of protein sequences have shown unprecedented scalability and broad generalizability in a wide range of predictive modeling tasks, but their power has not yet been harnessed for predicting protein–nucleic acid binding sites, critical for characterizing the interactions between proteins and nucleic acids. Here, we present EquiPNAS, a new pLM-informed E(3) equivariant deep graph neural network framework for improved protein–nucleic acid binding site prediction. By combining the strengths of pLM and symmetry-aware deep graph learning, EquiPNAS consistently outperforms the state-of-the-art methods for both protein–DNA and protein–RNA binding site prediction on multiple datasets across a diverse set of predictive modeling scenarios ranging from using experimental input to AlphaFold2 predictions. Our ablation study reveals that the pLM embeddings used in EquiPNAS are sufficiently powerful to dramatically reduce the dependence on the availability of evolutionary information without compromising on accuracy, and that the symmetry-aware nature of the E(3) equivariant graph-based neural architecture offers remarkable robustness and performance resilience. EquiPNAS is freely available at https://github.com/Bhattacharya-Lab/EquiPNAS.

     
    more » « less
  2. Transformer neural networks have revolutionized structural biology with the ability to predict protein structures at unprecedented high accuracy. Here, we report the predictive modeling performance of the state-of-the-art protein structure prediction methods built on transformers for 69 protein targets from the recently concluded 15th Critical Assessment of Structure Prediction (CASP15) challenge. Our study shows the power of transformers in protein structure modeling and highlights future areas of improvement.

     
    more » « less
  3. Li, Jinyan (Ed.)

    Artificial intelligence-powered protein structure prediction methods have led to a paradigm-shift in computational structural biology, yet contemporary approaches for predicting the interfacial residues (i.e., sites) of protein-protein interaction (PPI) still rely on experimental structures. Recent studies have demonstrated benefits of employing graph convolution for PPI site prediction, but ignore symmetries naturally occurring in 3-dimensional space and act only on experimental coordinates. Here we present EquiPPIS, an E(3) equivariant graph neural network approach for PPI site prediction. EquiPPIS employs symmetry-aware graph convolutions that transform equivariantly with translation, rotation, and reflection in 3D space, providing richer representations for molecular data compared to invariant convolutions. EquiPPIS substantially outperforms state-of-the-art approaches based on the same experimental input, and exhibits remarkable robustness by attaining better accuracy with predicted structural models from AlphaFold2 than what existing methods can achieve even with experimental structures. Freely available athttps://github.com/Bhattacharya-Lab/EquiPPIS, EquiPPIS enables accurate PPI site prediction at scale.

     
    more » « less
  4. Filipek, Sławomir (Ed.)
  5. Abstract

    Threading a query protein sequence onto a library of weakly homologous structural templates remains challenging, even when sequence‐based predicted contact or distance information is used. Contact‐assisted or distance‐assisted threading methods utilize only the spatial proximity of the interacting residue pairs for template selection and alignment, ignoring their orientation. Moreover, existing threading methods fail to consider the neighborhood effect induced by the query–template alignment. We present a new distance‐ and orientation‐based covariational threading method called DisCovER by effectively integrating information from inter‐residue distance and orientation along with the topological network neighborhood of a query–template alignment. Our method first selects a subset of templates using standard profile‐based threading coupled with topological network similarity terms to account for the neighborhood effect and subsequently performs distance‐ and orientation‐based query–template alignment using an iterative double dynamic programming framework. Multiple large‐scale benchmarking results on query proteins classified as weakly homologous from the continuous automated model evaluation experiment and from the current literature show that our method outperforms several existing state‐of‐the‐art threading approaches, and that the integration of the neighborhood effect with the inter‐residue distance and orientation information synergistically contributes to the improved performance of DisCovER. DisCovER is freely available athttps://github.com/Bhattacharya-Lab/DisCovER.

     
    more » « less