skip to main content


Search for: All records

Creators/Authors contains: "Mueller, Stefanie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Makerspaces persist as formal and informal spaces of learning for youth, promoting continued interest in studying how design can support the variety of learning opportunities within these spaces. However, much of the current research examining learning in makerspaces neglects the perspectives of educators. This not only hinders our understanding of educators’ goals and how educators navigate makerspaces but also constrains how we frame the design space of the learning experiences and environments. To address this, we engaged in a set of semi-structured interviews to examine the contexts, goals, values, and practices of seven educators across five makerspaces. A thematic analysis of the data identified six key categories of competencies that these educators prioritize including a range of skills, practices, and knowledge, such as technical proficiency, communication, and contextual reflection. The analysis also identified five categories of strategies to accomplish certain goals, such as scaffolding, collaboration, and relationship building. Last, it also shed light on three categories of challenges faced at the student-level, teacher-level, and institutional level. We conclude with a discussion on our insights into how we can broaden the problem space in the design of educational technologies to support learning in makerspaces.

     
    more » « less
  2. We introduce MechSense, 3D-printed rotary encoders that can be fabricated in one pass alongside rotational mechanisms, and report on their angular position, direction of rotation, and speed. MechSense encoders utilize capacitive sensing by integrating a floating capacitor into the rotating element and three capacitive sensor patches in the stationary part of the mechanism. Unlike existing rotary encoders, MechSense does not require manual assembly but can be seamlessly integrated during design and fabrication. Our MechSense editor allows users to integrate the encoder with a rotating mechanism and exports files for 3D-printing. We contribute a sensor topology and a computational model that can compensate for print deviations. Our technical evaluation shows that MechSense can detect the angular position (mean error: 1.4°) across multiple prints and rotations, different spacing between sensor patches, and different sizes of sensors. We demonstrate MechSense through three application examples on 3D-printed tools, tangible UIs, and gearboxes. 
    more » « less
  3. Integrating fabrication activities into existing video games provides opportunities for players to construct objects from their gameplay and bring the digital content into the physical world. In our prior work, we outlined a framework and developed a toolkit for integrating fabrication activities within existing digital games. Insights from our prior study highlighted the challenge of aligning fabrication mechanics with the existing game mechanics in order to strengthen the player aesthetics. In this paper, we address this challenge and build on our prior work by adding fabrication components to the Mechanics-Dynamics-Aesthetics (MDA) framework. We use this f-MDA framework to analyze the 47 fabrication events from the prior study. We list the new player-object aesthetics that emerge from integrating the existing game mechanics with fabrication mechanics. We identify connections between these emergent player-object aesthetics and the existing game mechanics. We discuss how designers can use this mapping to identify potential game mechanics for integrating with fabrication activities. 
    more » « less
  4. In the last decade, HCI researchers have designed and engineered several systems to lower the entry barrier for beginners and support novices in learning hands-on creative maker skills. These skills range from building electronics to fabricating physical artifacts. While much of the design and engineering of current learning systems is driven by the advances in technology, we can reimagine these systems by reorienting the design goals around constructivist and sociocultural theories of learning to support learning progression, engagement across artistic disciplines, and designing for inclusivity and accessibility. This one-day workshop aims to bring together the HCI researchers in systems engineering and learning sciences, challenge them to reimagine the future design of systems of learning creative maker skills, form connections across disciplines, and promote collaborative research in the systems of learning creative skills. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)