Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents a new approach for predicting thermodynamic properties of perovskites that harnesses deep learning and crystal structure fingerprinting based on Hirshfeld surface analysis. It is demonstrated that convolutional neural network methods capture critical features embedded in two-dimensional Hirshfeld surface fingerprints that enable a quantitative assessment of the formation energy of perovskites. Building on our recent work on lattice parameter prediction from Hirshfeld surface calculations, we show how transfer learning can be used to speed up the training of the neural network, allowing multiple properties to be trained using the same feature extraction layers. We also predict formation energies for various perovskite polymorphs, and our predictions are found to give generally improved performance over a well-established graph network method, but with the methods better suited to different types of datasets. Analysis of the structure types within the dataset reveals the Hirshfeld surface-based method to excel for the less symmetric and similar structures, while the graph network performs better for very symmetric and similar structures.more » « less
-
This Letter describes the use of deep learning methods on Hirshfeld surface representations of crystal structure, as an automated means of predicting lattice parameters in cubic inorganic perovskites. While Hirshfeld Surface Analysis is a well-established tool in organic crystallography, we also introduce modified computational protocols for Hirshfeld Surface Analysis tailored specifically to account for nuanced but important differences dealing with inorganic crystals. We demonstrate how two-dimensional Hirshfeld surface fingerprints can serve as a rich “database” of information encoding the complexity of relationships between chemical bonding and bond geometry characteristics of perovskites. Our results are compared with other studies on lattice parameter prediction involving both experimental and computationally derived data, and it is shown that our approach is an improvement over other reported methods. The paper concludes by discussing how this work opens new avenues for data-driven high throughput computational predictions of structure–property relationships involving complex crystal chemistries.more » « less
An official website of the United States government
