skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mukherjee, Soumendu Sundar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this article, we advance divide-and-conquer strategies for solving the community detection problem in networks. We propose two algorithms that perform clustering on several small subgraphs and finally patch the results into a single clustering. The main advantage of these algorithms is that they significantly bring down the computational cost of traditional algorithms, including spectral clustering, semidefinite programs, modularity-based methods, likelihood-based methods, etc., without losing accuracy, and even improving accuracy at times. These algorithms are also, by nature, parallelizable. Since most traditional algorithms are accurate, and the corresponding optimization problems are much simpler in small problems, our divide-and-conquer methods provide an omnibus recipe for scaling traditional algorithms up to large networks. We prove the consistency of these algorithms under various subgraph selection procedures and perform extensive simulations and real-data analysis to understand the advantages of the divide-and-conquer approach in various settings. 
    more » « less
  2. Community detection, which focuses on clustering nodes or detecting communities in (mostly) a single network, is a problem of considerable practical interest and has received a great deal of attention in the research community. While being able to cluster within a network is important, there are emerging needs to be able to \emph{cluster multiple networks}. This is largely motivated by the routine collection of network data that are generated from potentially different populations. These networks may or may not have node correspondence. When node correspondence is present, we cluster networks by summarizing a network by its graphon estimate, whereas when node correspondence is not present, we propose a novel solution for clustering such networks by associating a computationally feasible feature vector to each network based on trace of powers of the adjacency matrix. We illustrate our methods using both simulated and real data sets, and theoretical justifications are provided in terms of consistency. 
    more » « less