skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Mullikin, Ashley"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    The use of systems science methodologies to understand complex environmental and human health relationships is increasing. Requirements for advanced datasets, models, and expertise limit current application of these approaches by many environmental and public health practitioners.


    A conceptual system-of-systems model was applied for children in North Carolina counties that includes example indicators of children’s physical environment (home age, Brownfield sites, Superfund sites), social environment (caregiver’s income, education, insurance), and health (low birthweight, asthma, blood lead levels). The web-based Toxicological Prioritization Index (ToxPi) tool was used to normalize the data, rank the resulting vulnerability index, and visualize impacts from each indicator in a county. Hierarchical clustering was used to sort the 100 North Carolina counties into groups based on similar ToxPi model results. The ToxPi charts for each county were also superimposed over a map of percentage county population under age 5 to visualize spatial distribution of vulnerability clusters across the state.


    Data driven clustering for this systems model suggests 5 groups of counties. One group includes 6 counties with the highest vulnerability scores showing strong influences from all three categories of indicators (social environment, physical environment, and health). A second group contains 15 counties with high vulnerability scores driven by strong influences from home age in the physical environment and poverty in the social environment. A third group is driven by data on Superfund sites in the physical environment.


    This analysis demonstrated how systems science principles can be used to synthesize holistic insights for decision making using publicly available data and computational tools, focusing on a children’s environmental health example. Where more traditional reductionist approaches can elucidate individual relationships between environmental variables and health, the study of collective, system-wide interactions can enable insights into the factors that contribute to regional vulnerabilities and interventions that better address complex real-world conditions.

    more » « less
  2. null (Ed.)
    Increasing numbers of chemicals are on the market and present in consumer products. Emerging evidence on the relationship between environmental contributions and prevalent diseases suggests associations between early-life exposure to manufactured chemicals and a wide range of children’s health outcomes. Using current assessment methodologies, public health and chemical management decisionmakers face challenges in evaluating and anticipating the potential impacts of exposure to chemicals on children’s health in the broader context of their physical (built and natural) and social environments. Here, we consider a systems approach to address the complexity of children’s environmental health and the role of exposure to chemicals during early life, in the context of nonchemical stressors, on health outcomes. By advancing the tools for integrating this more complex information, the scope of considerations that support chemical management decisions can be extended to include holistic impacts on children’s health. 
    more » « less