skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nützmann, Gunnar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract. Groundwater table dynamics extensively modify the volume of the hyporheic zoneand the rate of hyporheic exchange processes. Understanding the effects ofdaily groundwater table fluctuations on the tightly coupled flow and heattransport within hyporheic zones is crucial for water resourcesmanagement. With this aim in mind, a physically based model is used to explorehyporheic responses to varying groundwater table fluctuationscenarios. The effects of different timing and amplitude of groundwater tabledaily drawdowns under gaining and losing conditions are explored in hyporheiczones influenced by natural flood events and diel river temperaturefluctuations. We find that both diel river temperature fluctuations and dailygroundwater table drawdowns play important roles in determining thespatiotemporal variability of hyporheic exchange rates, temperature ofexfiltrating hyporheic fluxes, mean residence times, and hyporheicdenitrification potentials. Groundwater table dynamics present substantiallydistinct impacts on hyporheic exchange under gaining or losing conditions. Thetiming of groundwater table drawdown has a direct influence on hyporheicexchange rates and hyporheic buffering capacity on thermaldisturbances. Consequently, the selection of aquifer pumping regimes hassignificant impacts on the dispersal of pollutants in the aquifer and thermalheterogeneity in the sediment. 
    more » « less