skip to main content

Title: How daily groundwater table drawdown affects the diel rhythm of hyporheic exchange
Abstract. Groundwater table dynamics extensively modify the volume of the hyporheic zoneand the rate of hyporheic exchange processes. Understanding the effects ofdaily groundwater table fluctuations on the tightly coupled flow and heattransport within hyporheic zones is crucial for water resourcesmanagement. With this aim in mind, a physically based model is used to explorehyporheic responses to varying groundwater table fluctuationscenarios. The effects of different timing and amplitude of groundwater tabledaily drawdowns under gaining and losing conditions are explored in hyporheiczones influenced by natural flood events and diel river temperaturefluctuations. We find that both diel river temperature fluctuations and dailygroundwater table drawdowns play important roles in determining thespatiotemporal variability of hyporheic exchange rates, temperature ofexfiltrating hyporheic fluxes, mean residence times, and hyporheicdenitrification potentials. Groundwater table dynamics present substantiallydistinct impacts on hyporheic exchange under gaining or losing conditions. Thetiming of groundwater table drawdown has a direct influence on hyporheicexchange rates and hyporheic buffering capacity on thermaldisturbances. Consequently, the selection of aquifer pumping regimes hassignificant impacts on the dispersal of pollutants in the aquifer and thermalheterogeneity in the sediment.  more » « less
Award ID(s):
2021015 1830172 2020814
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Page Range / eLocation ID:
1905 to 1921
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The transition area between rivers and their adjacent riparian aquifers, which may comprise the hyporheic zone, hosts important biochemical reactions, which control water quality. The rates of these reactions and metabolic processes are temperature dependent. Yet the thermal dynamics of riparian aquifers, especially during flooding and dynamic groundwater flow conditions, has seldom been studied. Thus, we investigated heat transport in riparian aquifers during 3 flood events of different magnitudes at 2 sites along the same river. River and riparian aquifer temperature and water‐level data along the Lower Colorado River in Central Texas, USA, were monitored across 2‐dimensional vertical sections perpendicular to the bank. At the downstream site, preflood temperature penetration distance into the bank suggested that advective heat transport from lateral hyporheic exchange of river water into the riparian aquifer was occurring during relatively steady low‐flow river conditions. Although a small (20‐cm stage increase) dam‐controlled flood pulse had no observable influence on groundwater temperature, larger floods (40‐cm and >3‐m stage increases) caused lateral movement of distinct heat plumes away from the river during flood stage, which then retreated back towards the river after flood recession. These plumes result from advective heat transport caused by flood waters being forced into the riparian aquifer. These flood‐induced temperature responses were controlled by the size of the flood, river water temperature during the flood, and local factors at the study sites, such as topography and local ambient water table configuration. For the intermediate and large floods, the thermal disturbance in the riparian aquifer lasted days after flood waters receded. Large floods therefore have impacts on the temperature regime of riparian aquifers lasting long beyond the flood's timescale. These persistent thermal disturbances may have a significant impact on biochemical reaction rates, nutrient cycling, and ecological niches in the river corridor.

    more » « less
  2. Abstract

    Hydropeaking, the alternating storage and release of water from reservoirs for hydropower generation, perturbs the thermal regime of many large rivers. While its effects on river temperature have been long studied, impacts on the thermal regime of riverbeds remain mostly unknown, despite riverbed temperature affecting rates of nutrient cycling and habitat suitability for benthic organisms. This study combines detailed field observations and flow and heat transport modeling to assess the impact of hydropeaking on riverbed temperatures in a large regulated river. The field site was 12 km downstream from a dam that induces large daily flow variations. Vertical thermistor arrays were used to collect riverbed temperature data across the entire 70 m‐wide channel. The riverbed near the left bank was highly dynamic thermally, transitioning between river and groundwater temperatures over daily hydropeaking cycles. In contrast, the rest of the riverbed, including near the right bank, was similar in temperature to the river and had relatively stable temperatures. Modeling showed that the temperatures near the banks are explained by advective heat transport driven by hydrostatic changes in river level, while the temperatures over the rest of the channel can be explained mostly by conductive heating. Gaining groundwater conditions and high sediment hydraulic conductivity favor thermally dynamic zones near banks, while low hydraulic conductivity (below 1 m/d) and neutral or losing groundwater conditions result in muted temperature fluctuations, as observed at the right bank. These spatial patterns can help predict thermally sensitive processes in the riverbeds of hydropeaked or flooding rivers.

    more » « less
  3. Abstract

    Dynamic hydrologic exchange flows in river beds and banks are important for many ecosystem functions throughout river corridors. Here we test whether the exchanges and the associated mixing between a flooding river and groundwater within the river’s bank can be effectively traced by Radon‐222 (222Rn), a naturally occurring, inert, radiogenic, and radioactive gas that can be analyzed and monitored in situ. The assessment was done by simulation of groundwater flow and reactive transport of222Rn in the bank following a single, relatively rapid (hours long) flood wave and auxiliary field observations of222Rn, temperature and total dissolved solids (a surrogate for any ionic conservative tracer). Results illustrate that222Rn is more effective than temperature and total dissolved solids in tracing dynamic hyporheic exchange.222Rn variations in space and time are larger than the analytical uncertainty of common measurement methods. The individual effects of aquifer hydraulic conductivity, dispersivity, river water222Rn concentration, and bank topography were analyzed through sensitivity analysis. Larger hydraulic conductivity and dispersivity, lower222Rn concentration in river water relative to groundwater, and gentler bank slopes resulted in a more prominent and traceable222Rn signal. The transport and residence time of exchanged water may be estimated and interpreted using reactive transport models such as those implemented here. However, such application is sensitive to fluctuations in river water222Rn, requiring it to be well characterized. The assessment provides guidance for using222Rn as a tracer for groundwater and surface water interactions in dynamic settings.

    more » « less
  4. Abstract

    Hyporheic exchange has the potential to significantly influence river temperatures in regions of continuous permafrost under low‐flow conditions given the strong thermal gradients that exist in river bed sediments. However, there is limited understanding of the impacts of hyporheic exchange on Arctic river temperatures. To address this knowledge gap, heat fluxes associated with hyporheic exchange were estimated in a fourth‐order Arctic river using field observations coupled with a river temperature model that accounts for hyporheic exchange influences. Temperature time series and tracer study solute breakthrough curves were measured in the main channel and river bed at multiple locations and depths to characterize hyporheic exchange and provide parameter bounds for model calibration. Model results for low‐flow periods from 3 years indicated that hyporheic exchange contributed up to 27% of the total river energy balance, reduced the main channel diel temperature range by up to 1.7 °C, and reduced mean daily temperatures by up to 0.21 °C over a 13.1‐km study reach. These influences are due to main channel heat loss during the day and gain at night via hyporheic exchange and heat loss from the hyporheic zone to the ground below via conduction. Main channel temperatures were found to be sensitive to simulated changes in ground temperatures due to changes in hyporheic exchange heat flux and deeper ground conduction. These results suggest that the moderating influence of hyporheic exchange could be reduced if ground temperatures warm in response to projected increases in permafrost thaw below rivers.

    more » « less
  5. Abstract

    Coupled groundwater flow and heat transport within hyporheic zones extensively affect water, energy, and solute exchange with surrounding sediments. The local and cumulative implications of this tightly coupled process strongly depend on characteristics of drivers (i.e., discharge and temperature of the water column) and modulators (i.e., hydraulic and thermal properties of the sediment). With this in mind, we perform a systematic numerical analysis of hyporheic responses to understand how the temporal variability of river discharge and temperature affect flow and heat transport within hyporheic zones. We identify typical time series of river discharge and temperature from gauging stations along the headwater region of Mississippi River Basin, which are characterized by different degrees of flow alteration, to drive a physics‐based model of the hyporheic exchange process. Our modeling results indicate that coupled groundwater flow and heat transport significantly affects the dynamic response of hyporheic zones, resulting in substantial differences in exchange rates and characteristic time scales of hyporheic exchange processes. We also find that the hyporheic zone dampens river temperature fluctuations increasingly with higher frequency of temperature fluctuations. This dampening effect depends on the system transport time scale and characteristics of river discharge and temperature variability. Furthermore, our results reveal that the flow alteration reduces the potential of hyporheic zones to act as a temperature buffer and hinders denitrification within hyporheic zones. These results have significant implications for understanding the drivers of local variability in hyporheic exchange and the implications for the development of thermal refugia and ecosystem functioning in hyporheic zones.

    more » « less