- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Naab, Thorsten (2)
-
Arriagada-Neira, Sebastián (1)
-
Brammer, Gabriel (1)
-
Bryan, Greg L. (1)
-
Förster-Schreiber, Natascha (1)
-
Gutcke, Thales A. (1)
-
Herrera-Camus, Rodrigo (1)
-
Lee, Minju M. (1)
-
Liu, Daizhong (1)
-
Magdis, Georgios (1)
-
Pakmor, Rüdiger (1)
-
Pfrommer, Christoph (1)
-
Price, Sedona H. (1)
-
Renzini, Alvio (1)
-
Springel, Volker (1)
-
Steidel, Charles C. (1)
-
Übler, Hannah (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We report the detection of cold dust in an apparently quiescent massive galaxy (log (M⋆/M⊙) ≈ 11) at z ∼ 2 (G4). The source is identified as a serendipitous 2 mm continuum source in a deep ALMA observation within the field of Q2343-BX610, a z = 2.21 massive star-forming disc galaxy. Available multiband photometry of G4 suggests redshift of z ∼ 2 and a low specific star formation rate (sSFR), log (SFR/M⋆)[yr−1] ≈ −10.2, corresponding to ≈1.2 dex below the z = 2 main sequence (MS). G4 appears to be a peculiar dust-rich quiescent galaxy for its stellar mass (log (Mdust/M⋆) = −2.71 ± 0.26), with its estimated mass-weighted age (∼1–2 Gyr). We compile z ≳ 1 quiescent galaxies in the literature and discuss their age–ΔMS and log (Mdust/M⋆)–age relations to investigate passive evolution and dust depletion scale. A long dust depletion time and its morphology suggest morphological quenching along with less efficient feedback that could have acted on G4. The estimated dust yield for G4 further supports this idea, requiring efficient survival of dust and/or grain growth, and rejuvenation (or additional accretion). Follow-up observations probing the stellar light and cold dust peak are necessary to understand the implication of these findings in the broader context of galaxy evolutionary studies and quenching in the early universe.more » « less
-
Gutcke, Thales A.; Pfrommer, Christoph; Bryan, Greg L.; Pakmor, Rüdiger; Springel, Volker; Naab, Thorsten (, The Astrophysical Journal)Abstract The dividing line between galaxies that are quenched by reionization (“relics”) and galaxies that survive reionization (i.e., continue forming stars) is commonly discussed in terms of a halo mass threshold. We probe this threshold in a physically more complete and accurate way than has been possible to date, using five extremely high resolution (Mtarget= 4M⊙) cosmological zoom-in simulations of dwarf galaxies within the halo mass range (1–4) × 109M⊙. The employed LYRA simulation model features resolved interstellar medium physics and individual, resolved supernova explosions. Interestingly, two out of five of the simulated dwarf galaxies lie close to the threshold mass but are neither full reionization relics nor full reionization survivors. These galaxies initially quench at the time of reionization but merely remain quiescent for ∼500 Myr. Atz∼ 5 they recommence star formation in a synchronous way and remain star-forming until the present day. The parallel timing indicates consistent sound-crossing and cooling times between the halos. While the star formation histories we find are diverse, we show that they are directly related to the ability of a given halo to retain and cool gas. Whereas the latter is most strongly dependent on the mass (or virial temperature) of the host halo at the time of reionization, it also depends on its growth history, the UV background (and its decrease at late times), and the amount of metals retained within the halo.more » « less
An official website of the United States government
