skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nabavizadeh, Seyed Amin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Active colloidal microcrystallites capable of generating flow patterns around or through their porous network are introduced, which in combination with “free microspheres,” create self‐assembled active clusters with multiple moving parts. Fluid flow draws microspheres within a microcrystallite's local environment toward—and aggregate at—the edge of the microcrystallite, where the previously translational movement transitions to continuous spinning. These experiments show that the spinning frequency decreases with an increase in diameter and that when the center of mass of a spinning particle is shifted off‐center—here Janus spheres—a time‐varying angular frequency is observed. Weight‐anisotropy also leads to a particularly intriguing phenomenon, which manifests as the spontaneous realignment of the rotational axis to a preferential direction; this effect is attributed to a gravitropic self‐correcting mechanism. Thus, the dynamics of the self‐assembled active structure remains stable over long time periods, despite being subjected to significant noise, for example, Brownian forces. 
    more » « less