skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Naderi, Shawheen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The human ability to generalize beyond interpolation, often called extrapolation or symbol-binding, is challenging to recreate with computational models. Biologically plausible models incorporating indirection mechanisms have demonstrated strong performance in this regard. Deep learning approaches such as Long Short-Term Memory (LSTM) and Transformers have shown varying degrees of success, but recent work has suggested that Transformers are capable of extrapolation as well. We evaluate the capabilities of the above approaches on a series of increasingly complex sentence-processing tasks to infer the capacity of each individual architecture to extrapolate sentential roles across novel word fillers. We confirm that the Transformer does possess superior abstraction capabilities compared to LSTM. However, what it does not possess is extrapolation capabilities, as evidenced by clear performance disparities on novel filler tasks as compared to working memory-based indirection models. 
    more » « less