skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nadew, Yiddiya Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate the problems of maximizing k-submodular functions over total size constraints and over individual size constraints. k-submodularity is a generalization of submodularity beyond just picking items of a ground set, instead associating one of k types to chosen items. For sensor selection problems, for instance, this enables modeling of which type of sensor to put at a location, not simply whether to put a sensor or not. We propose and analyze threshold-greedy algorithms for both types of constraints. We prove that our proposed algorithms achieve the best known approximation ratios for both constraint types, up to a user-chosen parameter that balances computational complexity and the approximation ratio, while only using a number of function evaluations that depends linearly (up to poly-logarithmic terms) on the number of elements n, the number of types k, and the inverse of the user chosen parameter. Other algorithms that achieve the best-known deterministic approximation ratios require a number of function evaluations that depend linearly on the budget B, while our methods do not. We empirically demonstrate our algorithms' performance in applications of sensor placement with k types and influence maximization with k topics. 
    more » « less