skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Nadgorny, Boris"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2023
  2. Abstract

    Transition metal alloys are essential for magnetic recording, memory, and new materials-by-design applications. Saturation magnetization in these alloys have previously been measured by conventional techniques, for a limited number of samples with discrete compositions, a laborious and time-consuming effort. Here, we propose a method to construct complete saturation magnetization diagrams for Co–Fe–Ni alloys using scanning Hall probe microscopy (SHPM). A composition gradient was created by the diffusion multiple technique, generating a full combinatorial materials library with an identical thermal history. The composition and crystallographic phases of the alloys were identified by integrated energy dispersive X-ray spectroscopy and electron backscatter diffraction. “Pixel-by-pixel” perpendicular components of the magnetic field were converted into maps of saturation magnetization using the inversion matrix technique. The saturation magnetization dependence for the binary alloys was consistent with the Slater-Pauling behavior. By using a significantly denser data point distribution than previously available, the maximum of the Slater-Pauling curve for the Co–Fe alloys was identified at ~ 32 at% of Co. By mapping the entire ternary diagram of Co–Fe–Ni alloys recorded in a single experiment, we have demonstrated that SHPM—in concert with the combinatorial approach—is a powerful high-throughput characterization tool, providing an effective metrology platform to advance the search for new magnetic materials.

     
    more » « less
  3. The ternary manganese pnictide phases, MnAs 1− x Sb x , are of interest for magnetic refrigeration and waste heat recovery due to their magnetocaloric properties, maximized at the Curie temperature ( T C ), which varies from 580–240 K, depending on composition. Nanoparticles potentially enable application in microelectronics (cooling) or graded composites that can operate over a wide temperature range, but manganese pnictides are synthetically challenging to realize as discrete nanoparticles and their fundamental magnetic properties have not been extensively studied. Accordingly, colloidal synthesis methods were employed to target discrete MnAs x Sb 1− x nanoparticles ( x = 0.1–0.9) by arrested precipitation reactions of Mn 2 (CO) 10 with (C 6 H 5 ) 3 AsO and (C 6 H 5 ) 3 Sb in coordinating solvents. The MnAs x Sb 1− x particles are spherical in morphology with average diameters 10–13 nm (standard deviations <20% based on transmission electron microscopy analysis). X-Ray fluorescence spectroscopy measurements on ensembles showed that all phases had an excess of Sb relative to the targeted composition, whereas energy dispersive spectroscopic mapping data of single particles revealed that the nanoparticles are inhomogeneous, adopting a core–shell structure, with the amorphous shell rich in Mn and O (and sometimes Sb) while the crystalline core is rich in Mn, As, and Sb. Magnetization measurements of the nanoparticle ensemble demonstrated the presence of both ferromagnetic and paramagnetic phases. By combining the magnetization measurements with precision chemical mapping and simple modeling, we were able to unambiguously attribute ferromagnetism to the MnAs x Sb 1− x crystalline core, whereas paramagnetism was attributed to the amorphous shell. Magnetization measurements at variable temperatures were used to determine the superparamagnetic transition of the nanoparticles, although for some compositions and particle sizes the blocking temperature exceeded room temperature. Preliminary magnetic studies also revealed a conventional dependence between core size and coercivity, in spite of variable compositions of the nanoparticles, an unexpected result. 
    more » « less