skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Nagarajan, Viswanath"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ride-pooling, which accommodates multiple passenger requests in a single trip, has the potential to substantially enhance the throughput of mobility-on-demand (MoD) systems. This paper investigates MoD systems that operate mixed fleets composed of “basic supply” and “augmented supply” vehicles. When the basic supply is insufficient to satisfy demand, augmented supply vehicles can be repositioned to serve rides at a higher operational cost. We formulate the joint vehicle repositioning and ride-pooling assignment problem as a two-stage stochastic integer program, where repositioning augmented supply vehicles precedes the realization of ride requests. Sequential ride-pooling assignments aim to maximize total utility or profit on a shareability graph: a hypergraph representing the matching compatibility between available vehicles and pending requests. Two approximation algorithms for midcapacity and high-capacity vehicles are proposed in this paper; the respective approximation ratios are [Formula: see text] and [Formula: see text], where p is the maximum vehicle capacity plus one. Our study evaluates the performance of these approximation algorithms using an MoD simulator, demonstrating that these algorithms can parallelize computations and achieve solutions with small optimality gaps (typically within 1%). These efficient algorithms pave the way for various multimodal and multiclass MoD applications.

    History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in Transportation Science and Logistics.

    Funding: This work was supported by the National Science Foundation [Grants CCF-2006778 and FW-HTF-P 2222806], the Ford Motor Company, and the Division of Civil, Mechanical, and Manufacturing Innovation [Grants CMMI-1854684, CMMI-1904575, and CMMI-1940766].

    Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2021.0349 .

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. We consider the following general network design problem. The input is an asymmetric metric (V, c), root [Formula: see text], monotone submodular function [Formula: see text], and budget B. The goal is to find an r-rooted arborescence T of cost at most B that maximizes f(T). Our main result is a simple quasi-polynomial time [Formula: see text]-approximation algorithm for this problem, in which [Formula: see text] is the number of vertices in an optimal solution. As a consequence, we obtain an [Formula: see text]-approximation algorithm for directed (polymatroid) Steiner tree in quasi-polynomial time. We also extend our main result to a setting with additional length bounds at vertices, which leads to improved [Formula: see text]-approximation algorithms for the single-source buy-at-bulk and priority Steiner tree problems. For the usual directed Steiner tree problem, our result matches the best previous approximation ratio but improves significantly on the running time. For polymatroid Steiner tree and single-source buy-at-bulk, our result improves prior approximation ratios by a logarithmic factor. For directed priority Steiner tree, our result seems to be the first nontrivial approximation ratio. Under certain complexity assumptions, our approximation ratios are the best possible (up to constant factors). 
    more » « less
  3. We study the assortment optimization problem when customer choices are governed by the paired combinatorial logit model. We study unconstrained, cardinality-constrained, and knapsack-constrained versions of this problem, which are all known to be NP-hard. We design efficient algorithms that compute approximately optimal solutions, using a novel relation to the maximum directed cut problem and suitable linear-program rounding algorithms. We obtain a randomized polynomial time approximation scheme for the unconstrained version and performance guarantees of 50% and [Formula: see text] for the cardinality-constrained and knapsack-constrained versions, respectively. These bounds improve significantly over prior work. We also obtain a performance guarantee of 38.5% for the assortment problem under more general constraints, such as multidimensional knapsack (where products have multiple attributes and there is a knapsack constraint on each attribute) and partition constraints (where products are partitioned into groups and there is a limit on the number of products selected from each group). In addition, we implemented our algorithms and tested them on random instances available in prior literature. We compared our algorithms against an upper bound obtained using a linear program. Our average performance bounds for the unconstrained, cardinality-constrained, knapsack-constrained, and partition-constrained versions are over 99%, 99%, 96%, and 99%, respectively. 
    more » « less