skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nagorski, Sonia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Biospheric particulate organic carbon (POCbio) burial and rock petrogenic particulate organic carbon (POCpetro) oxidation are opposing long‐term controls on the global carbon cycle, sequestering and releasing carbon, respectively. Here, we examine how watershed glacierization impacts the POC source by assessing the concentration and isotopic composition (δ13C and Δ14C) of POC exported from four watersheds with 0%–49% glacier coverage across a melt season in Southeast Alaska. We used two mixing models (age‐weight percent and dual carbon isotope) to calculate concentrations of POCbioand POCpetrowithin the bulk POC pool. The fraction POCpetrocontribution was highest in the heavily glacierized watershed (age‐weight percent: 0.39 ± 0.05; dual isotope: 0.42 (0.37–0.47)), demonstrating a glacial source of POCpetroto fjords. POCpetrowas mobilized via glacier melt and subglacial flow, while POCbiowas largely flushed from the non‐glacierized landscape by rain. Flow normalized POCbioconcentrations exceeded POCpetroconcentrations for all streams, but surprisingly were highest in the heavily glacierized watershed (mean: 0.70 mgL−1; range 0.16–1.41 mgL−1), suggesting that glacier rivers can contribute substantial POCbioto coastal waters. Further, the most heavily glacierized watershed had the highest sediment concentration (207 mgL−1; 7–708 mgL−1), and thus may facilitate long‐term POCbioprotection via sediment burial in glacier‐dominated fjords. Our results suggest that continuing glacial retreat will decrease POC concentrations and increase POCbio:POCpetroexported from currently glacierized watersheds. Glacier retreat may thus decrease carbon storage in marine sediments and provide a positive feedback mechanism to climate change that is sensitive to future changes in POCpetrooxidation. 
    more » « less
  2. null (Ed.)