skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nagy, Zoltan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Continuous manufacturing in pharmaceutical industries has shown great promise to achieve process intensification. To better understand and justify such changes to the current status quo, a technoeconomic analysis of a continuous production must be conducted to serve as a predictive decision-making tool for manufacturers. This paper uses PharmaPy, a custom-made Python-based library developed for pharmaceutical flowsheet analysis, to simulate an annual production cycle for a given active pharmaceutical ingredient (API) of varying production volumes for a batch crystallization system and a continuous mixed suspension, mixed product removal (MSMPR) crystallizer. After each system is optimized, the generalized cost drivers, categorized as capital expenses (CAPEX) or operational expenses (OPEX), are compared. Then, a technoeconomic and sustainability cost analysis is done with the process mass intensity (PMI) as a green metric. The results indicate that while the batch system does have an overall lower cost and better PMI metric at smaller manufacturing scales in comparison with the continuous system, the latter system showed more potential for scaling-up for larger production volumes. 
    more » « less
    Free, publicly-accessible full text available July 9, 2025
  2. Physics-informed machine learning (PIML) is a set of methods and tools that systematically integrate machine learning (ML) algorithms with physical constraints and abstract mathematical models developed in scientific and engineering domains. As opposed to purely data-driven methods, PIML models can be trained from additional information obtained by enforcing physical laws such as energy and mass conservation. More broadly, PIML models can include abstract properties and conditions such as stability, convexity, or invariance. The basic premise of PIML is that the integration of ML and physics can yield more effective, physically consistent, and data-efficient models. This paper aims to provide a tutorial-like overview of the recent advances in PIML for dynamical system modeling and control. Specifically, the paper covers an overview of the theory, fundamental concepts and methods, tools, and applications on topics of: 1) physics-informed learning for system identification; 2) physics-informed learning for control; 3) analysis and verification of PIML models; and 4) physics-informed digital twins. The paper is concluded with a perspective on open challenges and future research opportunities. 
    more » « less
  3. Abstract The pharmaceutical manufacturing sector needs to rapidly evolve to absorb the next wave of disruptive industrial innovations—Industry 4.0. This involves incorporating technologies like artificial intelligence and 3D printing (3DP) to automate and personalize the drug production processes. This study aims to build a formulation and process design (FPD) framework for a pharmaceutical 3DP platform that recommends operating (formulation and process) conditions at which consistent drop printing can be obtained. The platform used in this study is a displacement‐based drop‐on‐demand 3D printer that manufactures dosages by additively depositing the drug formulation as droplets on a substrate. The FPD framework is built in two parts: the first part involves building a machine learning model to simulate the forward problem—predicting printer operation for given operating conditions and the second part seeks to solve and experimentally validate the inverse problem—predicting operating conditions that can yield desired printer operation. 
    more » « less