skip to main content

Search for: All records

Creators/Authors contains: "Nain, Philippe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study a quantum entanglement distribution switch serving a set of users in a star topology with equal-length links. The quantum switch, much like a quantum repeater, can perform entanglement swapping to extend entanglement across longer distances. Additionally, the switch is equipped with entanglement switching logic, enabling it to implement switching policies to better serve the needs of the network. In this work, the function of the switch is to create bipartite or tripartite entangled states among users at the highest possible rates at a fixed ratio. Using Markov chains, we model a set of randomized switching policies. Discovering that some are better than others, we present analytical results for the case where the switch stores one qubit per user, and find that the best policies outperform a time division multiplexing policy for sharing the switch between bipartite and tripartite state generation. This performance improvement decreases as the number of users grows. The model is easily augmented to study the capacity region in the presence of quantum state decoherence and associated cut-off times for qubit storage, obtaining similar results. Moreover, decoherence-associated quantum storage cut-off times appear to have little effect on capacity in our identical-link system. We also study a smaller class of policies when the switch stores two qubits per user. 
    more » « less
    Free, publicly-accessible full text available June 30, 2024
  2. We state and prove the square root scaling laws for the amount of traffic injected by a covert attacker into a net- work from a set of homes under the assumption that traffic descriptors follow a multivariate Gaussian distribution. We numerically evaluate the obtained result under realistic set- tings wherein traffic is collected from real users, leveraging detectors that exploit multiple features. Under such circum- stances, we observe that phase transitions predicted by the model still hold. 
    more » « less
  3. null (Ed.)