- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Najmaei, Sina (2)
-
Adler, Eli R (1)
-
Barbara, Paola (1)
-
Boulares, Ibrahim (1)
-
Boyd, Robert (1)
-
Ekuma, Chinedu E. (1)
-
He, Yangchen (1)
-
Kastuar, Srihari M. (1)
-
Le, Thy_Doan Mai (1)
-
Liu, Zhong-Li (1)
-
Rhodes, Daniel (1)
-
Van_Keuren, Edward (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report the mechanical properties of cubic boron nitride (c-BN) and diamond under the combined impact of dynamical pressure and temperature, calculated using ab initio molecular dynamics. Our study revealed a pronounced sensitivity of the mechanical properties of c-BN to applied pressure. Notably, c-BN undergoes a brittle-to-ductile transition at ∼220 GPa, consistent across various dynamical temperatures, while diamond exhibits no such transition. Furthermore, the Vickers hardness profile for c-BN closely mirrors that of diamond across a spectrum of temperature–pressure conditions, highlighting c-BN's significant mechanical robustness. These results underscore the superior resilience and adaptability of c-BN compared to diamond, suggesting its potential as an ideal candidate for applications in extreme environments.more » « less
-
Adler, Eli R; Le, Thy_Doan Mai; Boulares, Ibrahim; Boyd, Robert; He, Yangchen; Rhodes, Daniel; Van_Keuren, Edward; Barbara, Paola; Najmaei, Sina (, Nanomaterials)Transition metal dichalcogenides (TMDs) have unique absorption and emission properties that stem from their large excitonic binding energies, reduced-dielectric screening, and strong spin–orbit coupling. However, the role of substrates, phonons, and material defects in the excitonic scattering processes remains elusive. In tungsten-based TMDs, it is known that the excitons formed from electrons in the lower-energy conduction bands are dark in nature, whereas low-energy emissions in the photoluminescence spectrum have been linked to the brightening of these transitions, either via defect scattering or via phonon scattering with first-order phonon replicas. Through temperature and incident-power-dependent studies of WS2 grown by CVD or exfoliated from high-purity bulk crystal on different substrates, we demonstrate that the strong exciton–phonon coupling yields brightening of dark transitions up to sixth-order phonon replicas. We discuss the critical role of defects in the brightening pathways of dark excitons and their phonon replicas, and we elucidate that these emissions are intrinsic to the material and independent of substrate, encapsulation, growth method, and transfer approach.more » « less