- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Abercrombie, Rachel E. (1)
-
Aster, Richard C (1)
-
Chaput, Julien (1)
-
Eberhart‐Phillips, Donna (1)
-
Nakai, Jenny (1)
-
Nakai, Jenny S. (1)
-
Peña_Castro, Andres Felipe (1)
-
Schmandt, Brandon (1)
-
Sheehan, Anne F. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We apply a machine learning (ML) earthquake detection technique on over 21 yr of seismic data from on-continent temporary and long-term networks to obtain the most complete catalog of seismicity in Antarctica to date. The new catalog contains 60,006 seismic events within the Antarctic continent for 1 January 2000–1 January 2021, with estimated moment magnitudes (Mw) between −1.0 and 4.5. Most detected seismicity occurs near Ross Island, large ice shelves, ice streams, ice-covered volcanoes, or in distinct and isolated areas within the continental interior. The event locations and waveform characteristics indicate volcanic, tectonic, and cryospheric sources. The catalog shows that Antarctica is more seismically active than prior catalogs would indicate, examples include new tectonic events in East Antarctica, seismic events near and around the vicinity of David Glacier, and many thousands of events in the Mount Erebus region. This catalog provides a resource for more specific studies using other detection and analysis methods such as template matching or transfer learning to further discriminate source types and investigate diverse seismogenic processes across the continent.more » « lessFree, publicly-accessible full text available July 31, 2025
-
Nakai, Jenny S.; Sheehan, Anne F.; Abercrombie, Rachel E.; Eberhart‐Phillips, Donna (, Journal of Geophysical Research: Solid Earth)Abstract We image seismic attenuation near the Hikurangi trench offshore New Zealand, using ocean bottom and land‐based seismometers, revealing high attenuation above a recurring shallow slow‐slip event and within the subducting Hikurangi Plateau. The Hikurangi subduction margin east of the North Island, New Zealand is the site of frequent shallow slow slip events. Overpressured fluids are hypothesized to lead to slow slip at shallow depths close to the oceanic trench. Seismic attenuation, energy loss of seismic waves, can be used to detect high temperatures, melt, the presence of fluids, and fractures. We use local earthquake P‐ and S‐waves from 180 earthquakes to invert fort*, and subsequently invert for Qp and Qs, offshore the North Island directly above the area of slow slip. We image Qp and Qs to ∼25 km depth, increasing resolution of previously identified coastal lowQ(100–300), and finding a new region of even higher attenuation (Qp and Qs < 50–100) directly above the shallow slow slip event of 2014–2015, beneath the offshore seismic array. This highest attenuation is downdip of a subducting seamount, and is spatially correlated with a high seismic reflectivity zone and Vp/Vs > 1.85, all of which provide evidence for the presence of fluids. The Qp and Qs is low at the trench (<50–100) and in the subducting plate (100–200), suggesting that seismic wave scattering due to faults, fractures, and the inherent heterogeneous composition of the Hikurangi Plateau, a large igneous province, plays a role in seismic attenuation.more » « less