skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 31, 2025

Title: (Re)Discovering the Seismicity of Antarctica: A New Seismic Catalog for the Southernmost Continent
Abstract We apply a machine learning (ML) earthquake detection technique on over 21 yr of seismic data from on-continent temporary and long-term networks to obtain the most complete catalog of seismicity in Antarctica to date. The new catalog contains 60,006 seismic events within the Antarctic continent for 1 January 2000–1 January 2021, with estimated moment magnitudes (Mw) between −1.0 and 4.5. Most detected seismicity occurs near Ross Island, large ice shelves, ice streams, ice-covered volcanoes, or in distinct and isolated areas within the continental interior. The event locations and waveform characteristics indicate volcanic, tectonic, and cryospheric sources. The catalog shows that Antarctica is more seismically active than prior catalogs would indicate, examples include new tectonic events in East Antarctica, seismic events near and around the vicinity of David Glacier, and many thousands of events in the Mount Erebus region. This catalog provides a resource for more specific studies using other detection and analysis methods such as template matching or transfer learning to further discriminate source types and investigate diverse seismogenic processes across the continent.  more » « less
Award ID(s):
1744852
PAR ID:
10543213
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Seismological Society of America
Date Published:
Journal Name:
Seismological Research Letters
ISSN:
0895-0695
Subject(s) / Keyword(s):
Antarctica Seismicity
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Raton Basin has been an area of injection induced seismicity for the past two decades. Previously, the reactivated fault zone structures and spatiotemporal response of seismicity to evolving injection have been poorly constrained due to sparse publicly available seismic monitoring. The application of a machine‐learning phase picker to 4 years of continuous seismic data from a local array enables the detection and location of ∼38,000 earthquakes. The events from 2016 to 2020 are ∼2.5–6 km below sea level and range from ML < −1 to 4.2. Most earthquakes occur within previously identified ∼N‐S zones of seismicity, however our new catalog illuminates that these zones are composed of many short faults with variable orientations. The two most active zones, the Vermejo Park and Tercio zones, are potentially linked by small intermediate faults. In total, we find ∼60 short (<3 km long) basement faults with strikes from WNW to NNE. Faulting mechanisms are predominantly normal but some variability, including reverse dip‐slip and oblique‐slip, is observed. The Trinidad fault zone, which previously hosted a Mw5.3 earthquake in 2011, is quiescent during 2016–2020, likely in response to both slow accumulation of tectonic strain after the 2011 sequence, and the significant decrease (80% reduction) in nearby wastewater injection from 2012 to 2016. Unlike some other regions, where induced seismicity was triggered in response to higher injection rates, the Raton Basin's frequency‐magnitude and spatiotemporal statistics are not distinguishable from tectonic seismicity. The similarity suggests that seismicity in the Raton Basin is predominantly releasing tectonic stress. 
    more » « less
  2. Antarctica is almost completely covered by the world’s largest ice sheet, and its hidden geologic structure partially controls the behavior of the ice layer. Recent advances in geophysical and remote sensing tools have allowed us to observe various transient phenomena, such as tectonic earthquakes, glacial bed slip events, and iceberg calving signals, all of which can be used to investigate solid Earth – cryosphere interactions. We analyzed seismic data collected by the TAMNNET temporary deployment as well as other stations in East Antarctica to identify and locate local icequakes, earthquakes, and other seismic events that occurred between 2012-2015. We employ two event detection approaches. The first is based on phase match filtering and waveform cross-correlation, which uses known events as templates to search through continuous data and to identify similar seismic signals. The second uses EQtransformer, a deep-learning-based event signal detector and phase picker. Event detections identified with both approaches will be compared to assess the effectiveness of these methods in East Antarctica. We also plan to use the combined constraints from our initial approaches to train a new machine-learning model and to assess its performance. Ultimately, our results will be used to evaluate automated event detection approaches for polar environments and to address fundamental questions related to tectonic-cryospheric interactions. 
    more » « less
  3. Abstract By providing unrivaled resolution in both time and space, volcano seismicity helps to chronicle and interpret eruptions. Standard earthquake detection methods are often insufficient as the eruption itself produces continuous seismic waves that obscure earthquake signals. We address this problem by developing an earthquake processing workflow specific to a high‐noise volcanic environment and applying it to the explosive 2008 Okmok Volcano eruption. This process includes applying single‐channel template matching combined with machine‐learning and fingerprint‐based techniques to expand the existing earthquake catalog of the eruption. We detected an order of magnitude more earthquakes, then located, relocated, determined locally calibrated magnitudes, and classified the events in the enhanced catalog. This new high‐resolution earthquake catalog increases the number of observations by about a factor of 10 and enables the detailed spatiotemporal seismic analysis during a large eruption. 
    more » « less
  4. Abstract We develop an automated processing procedure to derive a new catalog of earthquake locations, magnitudes, and potencies and analyze 9 years of data between 2008 and 2016 in the San Jacinto fault‐zone region. Our procedure accounts for detailed 3‐D velocity structure using a probabilistic global‐search location inversion and obtains high‐precision relative event locations using differential travel times measured by cross‐correlating waveforms. The obtained catalog illuminates spatiotemporal seismicity patterns in the fault zone with observations for 108,800 earthquakes in the magnitude range −1.8 to 5.4. Inside a focus region consisting of an 80‐km by 50‐km rectangle oriented parallel to the main fault trace, we estimate a 99% detection rate of earthquakes with magnitude 0.6 and greater and detect and locate about 60% more events than those present in the Southern California Seismic Network catalog. The results provide the most complete catalog available for the focused study region during the analyzed period and include both deeper events and very shallow patches of seismicity not present in the regional catalog. The seismicity exhibits a variety of complex patterns that contain important information on deformation processes in the region. The fraction of event pairs with waveforms having cross‐correlation coefficients ≥0.95 is only about 3%, indicating diverse processes operating in the fault zone. 
    more » « less
  5. Many seismic tomography investigations have imaged the East Antarctic lithosphere as a thick and continuous cratonic structure that is separated from the thinner lithosphere of the adjacent West Antarctic Rift System by the Transantarctic Mountains. However, recent studies have painted a more complicated picture, suggesting, for instance, a separate cratonic fragment beneath Dronning Maud Land and possible lithospheric delamination beneath the southern Transantarctic Mountains. In addition, patterns of intracratonic seismicity have been identified near the Gamburtsev Subglacial Mountains in East Antarctica, indicating possible rift zones in this region. That said, detailed imaging of the subsurface structure has remained challenging given the sparse distribution of seismic stations and the generally low seismicity rate throughout the interior of East Antarctica. Therefore, new approaches that can leverage existing seismic datasets to elucidate the Antarctic cratonic structure are vital. We are utilizing records of ambient seismic noise recorded by numerous temporary, moderate-term, and long-term seismic networks throughout Antarctica to improve the imaging of the lithospheric structure. Empirical Green’s Functions with periods of 40-340 seconds have been extracted using a frequency-time normalization approach, and these data are being used to constrain our full-waveform inversion. A finite-difference approach with a continental-scale, spherical grid is employed to numerically model synthetic seismograms, and a scattering integral method is used to construct the associated sensitivity kernels. Our initial results suggest that some portions of East Antarctica, particularly those beneath the Wilkes Subglacial Basin and the Aurora Basin, may have reduced shear-wave velocities that potentially indicate regions of thinner lithosphere. Further, possible segmentation may be present in the vicinity of the Gamburtsev Subglacial Mountains. Our new tomographic results will allow for further assessment of the East Antarctic tectonic structure and its relation to local seismicity. 
    more » « less