- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
01000010000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chang, Sang-Yoon (2)
-
Fan, Wenjun (2)
-
Kim, Jinoh (2)
-
Nakashima, Makiya (2)
-
Zhou, Xiaobo (2)
-
Chow, Edward (1)
-
Hong, Hsiang-Jen (1)
-
Kim, Ikkyun (1)
-
Wuthier, Simeon (1)
-
Wuthier, Simeon James (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The distributed cryptocurrency networking is critical because the information delivered through it drives the mining consensus protocol and the rest of the operations. However, the cryptocurrency peer-to-peer (P2P) network remains vulnerable, and the existing security approaches are either ineffective or inefficient because of the permissionless requirement and the broadcasting overhead. We design a Lightweight and Identifier-Oblivious eNgine (LION) for the anomaly detection of the cryptocurrency networking. LION is not only effective in permissionless networking but is also lightweight and practical for the computation-intensive miners. We build LION for anomaly detection and use traffic analyses so that it minimally affects the mining rate and is substantially superior in its computational efficiency than the previous approaches based on machine learning. We implement a LION prototype on an active Bitcoin node to show that LION yields less than 1% of mining rate reduction subject to our prototype, in contrast to the state-of-the-art machine-learning approaches costing 12% or more depending on the algorithms subject to our prototype, while having detection accuracy of greater than 97% F1-score against the attack prototypes and real-world anomalies. LION therefore can be deployed on the existing miners without the need to introduce new entities in the cryptocurrency ecosystem.more » « less
-
Kim, Jinoh ; Nakashima, Makiya ; Fan, Wenjun ; Wuthier, Simeon ; Zhou, Xiaobo ; Kim, Ikkyun ; Chang, Sang-Yoon ( , IEEE International Conference on Blockchain and Cryptocurrency (ICBC))While the blockchain technology provides strong cryptographic protection on the ledger and the system operations, the underlying blockchain networking remains vulnerable due to potential threats such as denial of service (DoS), Eclipse, spoofing, and Sybil attacks. Effectively detecting such malicious events should thus be an essential task for securing blockchain networks and services. Due to its importance, several studies investigated anomaly detection in Bitcoin and blockchain networks, but their analyses mainly focused on the blockchain ledger in the application context (e.g., transactions) and targets specific types of attacks (e.g., double-spending, deanonymization, etc). In this study, we present a security mechanism based on the analysis of blockchain network traffic statistics (rather than ledger data) to detect malicious events, through the functions of data collection and anomaly detection. The data collection engine senses the underlying blockchain traffic and generates multi-dimensional data streams in a periodic manner. The anomaly detection engine then detects anomalies from the created data instances based on semi-supervised learning, which is capable of detecting previously unseen patterns, and we introduce our profiling-based detection engine implemented on top of AutoEncoder (AE). Our experimental results support the effectiveness of the presented security mechanism for accurate, online detection of malicious events from blockchain networking traffic data. We also show further reduction in time complexity (up to 66.8% for training and 85.7% for testing), without any performance degradation using feature prioritization compared to the utilization of the entire features.more » « less