skip to main content


Search for: All records

Creators/Authors contains: "Nakhimovich, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 11, 2025
  2. Performing object retrieval in real-world workspaces must tackle challenges including uncertainty and clutter. One option is to apply prehensile operations, which can be time consuming in highly-cluttered scenarios. On the other hand, non-prehensile actions, such as pushing simultaneously multiple objects, can help to quickly clear a cluttered workspace and retrieve a target object. Such actions, however, can also lead to increased uncertainty as it is difficult to estimate the outcome of pushing operations. The proposed framework in this work integrates topological tools and Monte-Carlo Tree Search (MCTS) to achieve effective and robust pushing for object retrieval. It employs persistent homology to automatically identify manageable clusters of blocking objects without the need for manually adjusting hyper-parameters. Then, MCTS uses this information to explore feasible actions to push groups of objects, aiming to minimize the number of operations needed to clear the path to the target. Real-world experiments using a Baxter robot, which involves some noise in actuation, show that the proposed framework achieves a higher success rate in solving retrieval tasks in dense clutter than alternatives. Moreover, it produces solutions with few pushing actions improving the overall execution time. More critically, it is robust enough that it allows one to plan the sequence of actions offline and then execute them reliably on a Baxter robot. 
    more » « less
    Free, publicly-accessible full text available December 4, 2024
  3. null (Ed.)
    Object rearrangement is a widely-applicable and challenging task for robots. Geometric constraints must be carefully examined to avoid collisions and combinatorial issues arise as the number of objects increases. This work studies the algorithmic structure of rearranging uniform objects, where robot-object collisions do not occur but object-object collisions have to be avoided. The objective is minimizing the number of object transfers under the assumption that the robot can manipulate one object at a time. An efficiently computable decomposition of the configuration space is used to create a ``region graph'', which classifies all continuous paths of equivalent collision possibilities. Based on this compact but rich representation, a complete dynamic programming primitive DFSDP performs a recursive depth first search to solve monotone problems quickly, i.e., those instances that do not require objects to be moved first to an intermediate buffer. DFSDP is extended to solve single-buffer, non-monotone instances, given a choice of an object and a buffer. This work utilizes these primitives as local planners in an informed search framework for more general, non-monotone instances. The search utilizes partial solutions from the primitives to identify the most promising choice of objects and buffers. Experiments demonstrate that the proposed solution returns near-optimal paths with higher success rate, even for challenging non-monotone instances, than other leading alternatives. 
    more » « less
  4. Roberts F.S., Sheremet I.A. (Ed.)
    The Covid-19 pandemic is a reminder that modern society is still susceptible to multiple types of natural or man-made disasters, which motivates the need to improve resiliency through technological advancement. This article focuses on robotics and the role it can play towards providing resiliency to disasters. The progress in this domain brings the promise of effectively deploying robots in response to life-threatening disasters, which includes highly unstructured setups and hazardous spaces inaccessible or harmful to humans. This article discusses the maturity of robotics technology and explores the needed advances that will allow robots to become more capable and robust in disaster response measures. It also explores how robots can help in making human and natural environments preemptively more resilient without compromising long-term prospects for economic development. Despite its promise, there are also concerns that arise from the deployment of robots. Those discussed relate to safety considerations, privacy infringement, cyber-security, and financial aspects, such as the cost of development and maintenance as well as impact on employment. 
    more » « less
  5. null (Ed.)
    Object rearrangement is a widely-applicable and challenging task for robots. Geometric constraints must be carefully examined to avoid collisions and combinatorial issues arise as the number of objects increases. This work studies the algorithmic structure of rearranging uniform objects, where robot-object collisions do not occur but object-object collisions have to be avoided. The objective is minimizing the number of object transfers under the assumption that the robot can manipulate one object at a time. An efficiently computable decomposition of the configuration space is used to create a “region graph”, which classifies all continuous paths of equivalent collision possibilities. Based on this compact but rich representation, a complete dynamic programming primitive DFS DP performs a recursive depth first search to solve monotone problems quickly, i.e., those instances that do not require objects to be moved first to an intermediate buffer. DFS DP is extended to solve single-buffer, non-monotone instances, given a choice of an object and a buffer. This work utilizes these primitives as local planners in an informed search framework for more general, non-monotone instances. The search utilizes partial solutions from the primitives to identify the most promising choice of objects and buffers. Experiments demonstrate that the proposed solution returns near-optimal paths with higher success rate, even for challenging non-monotone instances, than other leading alternatives. 
    more » « less