Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 24, 2025
-
Ensemble models (bagging and gradient-boosting) of relational decision trees have proved to be some of the most effective learning methods in the area of probabilistic logic models (PLMs). While effective, they lose one of the most important benefits of PLMs—interpretability. In this paper we consider the problem of compressing a large set of learned trees into a single explainable model. To this effect, we propose CoTE—Compression of Tree Ensembles—that produces a single small decision list as a compressed representation. CoTE first converts the trees to decision lists and then performs the combination and compression with the aid of the original training set. An experimental evaluation demonstrates the effectiveness of CoTE in several benchmark relational data sets.more » « lessFree, publicly-accessible full text available March 1, 2025
-
Lifted inference algorithms exploit model symmetry to reduce computational cost in probabilistic inference. However, most existing lifted inference algorithms operate only over discrete domains or continuous domains with restricted potential functions. We investigate two approximate lifted variational approaches that apply to domains with general hybrid potentials, and are expressive enough to capture multi-modality. We demonstrate that the proposed variational methods are highly scalable and can exploit approximate model symmetries even in the presence of a large amount of continuous evidence, outperforming existing message-passing-based approaches in a variety of settings. Additionally, we present a sufficient condition for the Bethe variational approximation to yield a non-trivial estimate over the marginal polytope.