skip to main content

Search for: All records

Creators/Authors contains: "Nazari, Yasamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2025
  2. A t-emulator of a graph G is a graph H that approximates its pairwise shortest path distances up to multiplicative t error. We study fault tolerant t-emulators, under the model recently introduced by Bodwin, Dinitz, and Nazari [ITCS 2022] for vertex failures. In this paper we consider the version for edge failures, and show that they exhibit surprisingly different behavior. In particular, our main result is that, for (2k-1)-emulators with k odd, we can tolerate a polynomial number of edge faults for free. For example: for any n-node input graph, we construct a 5-emulator (k = 3) on O(n^{4/3}) edges that is robust to f = O(n^{2/9}) edge faults. It is well known that Ω(n^{4/3}) edges are necessary even if the 5-emulator does not need to tolerate any faults. Thus we pay no extra cost in the size to gain this fault tolerance. We leave open the precise range of free fault tolerance for odd k, and whether a similar phenomenon can be proved for even k. 
    more » « less
  3. null (Ed.)
    There has been significant recent progress on algorithms for approximating graph spanners, i.e., algorithms which approximate the best spanner for a given input graph. Essentially all of these algorithms use the same basic LP relaxation, so a variety of papers have studied the limitations of this approach and proved integrality gaps for this LP. We extend these results by showing that even the strongest lift-and-project methods cannot help significantly, by proving polynomial integrality gaps even for n^{\Omega(\epsilon)} levels of the Lasserre hierarchy, for both the directed and undirected spanner problems. We also extend these integrality gaps to related problems, notably Directed Steiner Network and Shallow-Light Steiner Network. 
    more » « less