skip to main content

Search for: All records

Creators/Authors contains: "Necib, Lina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Nyx is a nearby, prograde, and high-eccentricity stellar stream physically contained in the thick disk, but its origin is unknown. Nyx could be the remnant of a disrupted dwarf galaxy, in which case the associated dark matter substructure could affect terrestrial dark matter direct-detection experiments. Alternatively, Nyx could be a signature of the Milky Way’s disk formation and evolution. To determine the origin of Nyx, we obtained high-resolution spectroscopy of 34 Nyx stars using Keck/HIRES and Magellan/MIKE. A differential chemical abundance analysis shows that most Nyx stars reside in a metal-rich ([Fe/H] > −1) high-αcomponent that is chemically indistinguishable from the thick disk. This rules out the originally suggested scenario that Nyx is the remnant of a single massive dwarf galaxy merger. However, we also identify 5 substantially more metal-poor stars ([Fe/H] ∼ −2.0) whose chemical abundances are similar to those of the metal-weak thick disk. It remains unclear how stars that are chemically identical to the thick disk can be on such prograde, high-eccentricity orbits. We suggest two most likely scenarios: that Nyx is the result of an early minor dwarf galaxy merger, or that it is a record of the early spin-up of the Milky Way disk—although neither perfectly reproduces the chemodynamic observations. The most likely formation scenarios suggest that future spectroscopic surveys should find Nyx-like structures outside of the solar neighborhood.

    more » « less

    Understanding local stellar kinematic substructures in the solar neighbourhood helps build a complete picture of the formation of the Milky Way, as well as an empirical phase space distribution of dark matter that would inform detection experiments. We apply the clustering algorithm hdbscan on the Gaia early third data release to identify a list of stable clusters in velocity space and action-angle space by taking into account the measurement uncertainties and studying the stability of the clustering results. We find 1405 (497) stars in 23 (6) robust clusters in velocity space (action-angle space) that are consistently not associated with noise. We discuss the kinematic properties of these structures and study whether many of the small clusters belong to a similar larger cluster based on their chemical abundances. They are attributed to the known structures: the Gaia Sausage-Enceladus, the Helmi Stream, and globular cluster NGC 3201 are found in both spaces, while NGC 104 and the thick disc (Sequoia) are identified in velocity space (action-angle space). Although we do not identify any new structures, we find that the hdbscan member selection of already known structures is unstable to input kinematics of the stars when resampled within their uncertainties. We therefore present the stable subset of local kinematic structures, which are consistently identified by the clustering algorithm, and emphasize the need to take into account error propagation during both the manual and automated identification of stellar structures, both for existing ones as well as future discoveries.

    more » « less
  3. Free, publicly-accessible full text available February 1, 2024
  4. Abstract In the Λ-Cold Dark Matter model of the universe, galaxies form in part through accreting satellite systems. Previous works have built an understanding of the signatures of these processes contained within galactic stellar halos. This work revisits that picture using seven Milky Way–like galaxies in the Latte suite of FIRE-2 cosmological simulations. The resolution of these simulations allows a comparison of contributions from satellites above M * ≳ 10 × 7 M ⊙ , enabling the analysis of observable properties for disrupted satellites in a fully self-consistent and cosmological context. Our results show that the time of accretion and the stellar mass of an accreted satellite are fundamental parameters that in partnership dictate the resulting spatial distribution, orbital energy, and [ α /Fe]-[Fe/H] compositions of the stellar debris of such mergers at present day. These parameters also govern the resulting dynamical state of an accreted galaxy at z = 0, leading to the expectation that the inner regions of the stellar halo ( R GC ≲ 30 kpc) should contain fully phase-mixed debris from both lower- and higher-mass satellites. In addition, we find that a significant fraction of the lower-mass satellites accreted at early times deposit debris in the outer halo ( R GC > 50 kpc) that are not fully phased-mixed, indicating that they could be identified in kinematic surveys. Our results suggest that, as future surveys become increasingly able to map the outer halo of our Galaxy, they may reveal the remnants of long-dead dwarf galaxies whose counterparts are too faint to be seen in situ in higher-redshift surveys. 
    more » « less
    Free, publicly-accessible full text available February 1, 2024
  5. Abstract We present the first detailed comparison of populations of dwarf galaxy stellar streams in cosmological simulations and the Milky Way. In particular, we compare streams identified around 13 Milky Way analogs in the FIRE-2 simulations to streams observed by the Southern Stellar Stream Spectroscopic Survey ( S 5 ). For an accurate comparison, we produce mock Dark Energy Survey (DES) observations of the FIRE streams and estimate the detectability of their tidal tails and progenitors. The number and stellar mass distributions of detectable stellar streams is consistent between observations and simulations. However, there are discrepancies in the distributions of pericenters and apocenters, with the detectable FIRE streams, on average, forming at larger pericenters (out to >110 kpc) and surviving only at larger apocenters (≳40 kpc) than those observed in the Milky Way. We find that the population of high-stellar-mass dwarf galaxy streams in the Milky Way is incomplete. Interestingly, a large fraction of the FIRE streams would only be detected as intact satellites in DES-like observations, since their tidal tails have too low surface brightness to be detectable. We thus predict a population of yet-undetected tidal tails around Milky Way satellites, as well as a population of fully undetected low-surface-brightness stellar streams, and estimate their detectability with the Rubin Observatory. Finally, we discuss the causes and implications of the discrepancies between the stream populations in FIRE and the Milky Way, and explore future avenues for tests of satellite disruption in cosmological simulations. 
    more » « less
    Free, publicly-accessible full text available May 25, 2024
  6. Abstract

    The local escape velocity provides valuable inputs to the mass profile of the galaxy, and requires understanding the tail of the stellar speed distribution. Following Leonard & Tremaine, various works have since modeled the tail of the stellar speed distribution as(vescv)k, wherevescis the escape velocity, andkis the slope of the distribution. In such studies, however, these two parameters were found to be largely degenerate and often a narrow prior is imposed onkin order to constrainvesc. Furthermore, the validity of the power-law form can breakdown in the presence of multiple kinematic substructures or other mis-modeled features in the data. In this paper, we introduce a strategy that for the first time takes into account the presence of kinematic substructure. We model the tail of the velocity distribution as a sum of multiple power laws as a way of introducing a more flexible fitting framework. Using mock data and data from FIRE simulations of Milky Way-like galaxies, we show the robustness of this method in the presence of kinematic structure that is similar to the recently discovered Gaia Sausage. In a companion paper, we present the new measurement of the escape velocity and subsequently the mass of the Milky Way using Gaia eDR3 data.

    more » « less
  7. Abstract

    Measuring the escape velocity of the Milky Way is critical in obtaining the mass of the Milky Way, understanding the dark matter velocity distribution, and building the dark matter density profile. In Necib & Lin, we introduced a strategy to robustly measure the escape velocity. Our approach takes into account the presence of kinematic substructures by modeling the tail of the stellar distribution with multiple components, including the stellar halo and the debris flow called the Gaia Sausage (Enceladus). In doing so, we can test the robustness of the escape velocity measurement for different definitions of the “tail” of the velocity distribution and the consistency of the data with different underlying models. In this paper, we apply this method to the Gaia eDR3 data release and find that a model with two components is preferred, although results from a single-component fit are also consistent. Based on a fit to retrograde data with two bound components to account for the relaxed halo and the Gaia Sausage, we find the escape velocity of the Milky Way at the solar position to bevesc=4458+25km s−1. A fit with a single component to the same data givesvesc=47212+17km s−1. Assuming a Navarro−Frenck−White dark matter profile, we find a Milky Way concentration ofc200=197+11and a mass ofM200=4.60.8+1.5×1011M, which is considerably lighter than previous measurements.

    more » « less
  8. Abstract Little is known about the origin of the fastest stars in the Galaxy. Our understanding of the chemical evolution history of the Milky Way and surrounding dwarf galaxies allows us to use the chemical composition of a star to investigate its origin and to say whether it was formed in situ or was accreted. However, the fastest stars, the hypervelocity stars, are young and massive and their chemical composition has not yet been analyzed. Though it is difficult to analyze the chemical composition of a massive young star, we are well versed in the analysis of late-type stars. We have used high-resolution ARCES/3.5 m Apache Point Observatory, MIKE/Magellan spectra to study the chemical details of 15 late-type hypervelocity star candidates. With Gaia EDR3 astrometry and spectroscopically determined radial velocities we found total velocities with a range of 274–520 km s −1 and mean value of 381 km s −1 . Therefore, our sample stars are not fast enough to be classified as hypervelocity stars, and are what is known as extreme-velocity stars. Our sample has a wide iron abundance range of −2.5 ≤ [Fe/H] ≤ −0.9. Their chemistry indicates that at least 50% of them are accreted extragalactic stars, with iron-peak elements consistent with prior enrichment by sub-Chandrasekhar mass Type Ia supernovae. Without indication of binary companions, their chemical abundances and orbital parameters indicate that they are the accelerated tidal debris of disrupted dwarf galaxies. 
    more » « less
  9. ABSTRACT Increasingly, uncertainties in predictions from galaxy formation simulations (at sub-Milky Way masses) are dominated by uncertainties in stellar evolution inputs. In this paper, we present the full set of updates from the Feedback In Realistic Environment (FIRE)-2 version of the FIRE project code, to the next version, FIRE-3. While the transition from FIRE-1 to FIRE-2 focused on improving numerical methods, here we update the stellar evolution tracks used to determine stellar feedback inputs, e.g. stellar mass-loss (O/B and AGB), spectra (luminosities and ionization rates), and supernova rates (core-collapse and Ia), as well as detailed mass-dependent yields. We also update the low-temperature cooling and chemistry, to enable improved accuracy at $T \lesssim 10^{4}\,$K and densities $n\gg 1\, {\rm cm^{-3}}$, and the meta-galactic ionizing background. All of these synthesize newer empirical constraints on these quantities and updated stellar evolution and yield models from a number of groups, addressing different aspects of stellar evolution. To make the updated models as accessible as possible, we provide fitting functions for all of the relevant updated tracks, yields, etc, in a form specifically designed so they can be directly ‘plugged in’ to existing galaxy formation simulations. We also summarize the default FIRE-3 implementations of ‘optional’ physics, including spectrally resolved cosmic rays and supermassive black hole growth and feedback. 
    more » « less
    Free, publicly-accessible full text available December 30, 2023