skip to main content


Title: Signatures of Tidal Disruption of the Hercules Ultrafaint Dwarf Galaxy*
Abstract

The Hercules ultrafaint dwarf galaxy (UFD) has long been hypothesized to be tidally disrupting, yet no conclusive evidence has been found for tidal disruption owing partly to difficulties in identifying Hercules member stars. In this work, we present a homogeneous reanalysis of new and existing observations of Hercules, including the detection of a new potential member star located ∼1° (∼1.7 kpc) west of the center of the system. In addition to measuring the line-of-sight velocity gradient, we compare predictions from dynamical models of stream formation to these observations. We report an updated velocity dispersion measurement based on 28 stars,1.90.6+0.6km s−1, which is significantly lower than previous measurements. We find that the line-of-sight velocity gradient is1.81.8+1.8km s−1kpc along the major axis of Hercules, consistent with zero within 1σ. Our dynamical models of stream formation, on the other hand, can reproduce the morphology of the Hercules UFD, specifically the misalignment between the elongation and the orbital motion direction. Additionally, these dynamical models indicate that any radial velocity gradient from tidal disruption would be too small,0.000.91+0.97km s−1kpc, to be detectable with current sample sizes. Combined with our analysis of the tidal radius evolution of the system as a function of its orbital phase, we argue that it is likely that Hercules is indeed currently undergoing tidal disruption in its extended stellar halo with a line-of-sight velocity gradient too small to be detected with current observational data sets.

 
more » « less
Award ID(s):
2303841
NSF-PAR ID:
10502176
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
966
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 33
Size(s):
["Article No. 33"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a chemodynamical study of the Grus I ultra-faint dwarf galaxy (UFD) from medium-resolution (R∼ 11,000) Magellan/IMACS spectra of its individual member stars. We identify eight confirmed members of Grus I, based on their low metallicities and coherent radial velocities, and four candidate members for which only velocities are derived. In contrast to previous work, we find that Grus I has a very low mean metallicity of 〈[Fe/H]〉 = −2.62 ± 0.11 dex, making it one of the most metal-poor UFDs. Grus I has a systemic radial velocity of −143.5 ± 1.2 km s−1and a velocity dispersion ofσrv=2.50.8+1.3km s−1, which results in a dynamical mass ofM1/2(rh)=84+12×105Mand a mass-to-light ratio ofM/LV=440250+650M/L. Under the assumption of dynamical equilibrium, our analysis confirms that Grus I is a dark-matter-dominated UFD (M/L> 80M/L). However, we do not resolve a metallicity dispersion (σ[Fe/H]< 0.44 dex). Our results indicate that Grus I is a fairly typical UFD with parameters that agree with mass–metallicity and metallicity-luminosity trends for faint galaxies. This agreement suggests that Grus I has not lost an especially significant amount of mass from tidal encounters with the Milky Way, in line with its orbital parameters. Intriguingly, Grus I has among the lowest central densities (ρ1/23.52.1+5.7×107Mkpc−3) of the UFDs that are not known to be tidally disrupting. Models of the formation and evolution of UFDs will need to explain the diversity of these central densities, in addition to any diversity in the outer regions of these relic galaxies.

     
    more » « less
  2. Abstract

    High-resolution X-ray observations offer a unique tool for probing the still-elusive connection between galaxy mergers and active galactic nuclei (AGNs). We present an analysis of nuclear X-ray emission in an optically selected sample of 92 close galaxy pairs (with projected separations ≲20 kpc and line-of-sight velocity offsets <500 km s−1) at low redshift (z¯0.07), based on archival Chandra observations. The parent sample of galaxy pairs is constructed without imposing an optical classification of nuclear activity, thus it is largely free of selection effect for or against the presence of an AGN. Nor is this sample biased for or against gas-rich mergers. An X-ray source is detected in 70 of the 184 nuclei, giving a detection rate of38%5%+5%, down to a 0.5–8 keV limiting luminosity of ≲1040erg s−1. The detected and undetected nuclei show no systematic difference in their host galaxy properties such as galaxy morphology, stellar mass, and stellar velocity dispersion. When potential contamination from star formation is avoided (i.e.,L2−10 keV> 1041erg s−1), the detection rate becomes18%3%+3%(32/184), which shows no excess compared to the X-ray detection rate of a comparison sample of optically classified single AGNs. The fraction of pairs containing dual AGN is only2%2%+2%. Moreover, most nuclei at the smallest projected separations probed by our sample (a few kiloparsecs) have an unexpectedly low apparent X-ray luminosity and Eddington ratio, which cannot be solely explained by circumnuclear obscuration. These findings suggest that close galaxy interaction is not a sufficient condition for triggering a high level of AGN activity.

     
    more » « less
  3. Abstract

    We present an analysis of nearly 1000 near-infrared, integrated-light spectra from APOGEE in the inner ∼7 kpc of M31. We utilize full-spectrum fitting with A-LIST simple stellar population spectral templates that represent a population of stars with the same age, [M/H], and [α/M]. With this, we determine the mean kinematics, metallicities,αabundances, and ages of the stellar populations of M31's bar, bulge, and inner disk (∼4–7 kpc). We find a nonaxisymmetric velocity field in M31 resulting from the presence of a bar. The bulge of M31 is less metal-rich (mean [M/H] =0.1490.081+0.067dex) than the disk, features minima in metallicity on either side of the bar ([M/H] ∼ −0.2), and is enhanced inαabundance (mean [α/M] =0.2810.038+0.035). The disk of M31 within ∼7 kpc is enhanced in both metallicity ([M/H] =0.0230.052+0.050) andαabundance ([α/M] =0.2740.025+0.020). Both of these structural components are uniformly old at ≃12 Gyr. We find the mean metallicity increases with distance from the center of M31, with the steepest gradient along the disk major axis (0.043 ± 0.021 dex kpc−1). This gradient is the result of changing light contributions from the bulge and disk. The chemodynamics of stellar populations encodes information about a galaxy’s chemical enrichment, star formation history, and merger history, allowing us to discuss new constraints on M31's formation. Our results provide a stepping stone between our understanding of the Milky Way and other external galaxies.

     
    more » « less
  4. Abstract

    We present deep Hubble Space Telescope (HST) photometry of the ultra-faint dwarf (UFD) galaxies Pegasus III (Peg III) and Pisces II (Psc II), two of the most distant satellites in the halo of the Milky Way (MW). We measure the structure of both galaxies, derive mass-to-light ratios with newly determined absolute magnitudes, and compare our findings to expectations from UFD-mass simulations. For Peg III, we find an elliptical half-light radius ofah=1.′880.33+0.42(11830+31pc) andMV=4.170.22+0.19;for Psc II, we measureah=1.′310.09+0.10(69 ± 8 pc) andMV=4.280.16+0.19. We do not find any morphological features that indicate a significant interaction between the two has occurred, despite their close separation of only ∼40 kpc. Using proper motions (PMs) from Gaia early Data Release 3, we investigate the possibility of any past association by integrating orbits for the two UFDs in an MW-only and a combined MW and Large Magellanic Cloud (LMC) potential. We find that including the gravitational influence of the LMC is crucial, even for these outer-halo satellites, and that a possible orbital history exists where Peg III and Psc II experienced a close (∼10–20 kpc) passage about each other just over ∼1 Gyr ago, followed by a collective passage around the LMC (∼30–60 kpc) just under ∼1 Gyr ago. Considering the large uncertainties on the PMs and the restrictive priors imposed to derive them, improved PM measurements for Peg III and Psc II will be necessary to clarify their relationship. This would add to the rare findings of confirmed pairs of satellites within the Local Group.

     
    more » « less
  5. Abstract

    We present a radial velocity (RV) analysis of TOI-1136, a bright Transiting Exoplanet Survey Satellite (TESS) system with six confirmed transiting planets, and a seventh single-transiting planet candidate. All planets in the system are amenable to transmission spectroscopy, making TOI-1136 one of the best targets for intra-system comparison of exoplanet atmospheres. TOI-1136 is young (∼700 Myr), and the system exhibits transit timing variations (TTVs). The youth of the system contributes to high stellar variability on the order of 50 m s−1, much larger than the likely RV amplitude of any of the transiting exoplanets. Utilizing 359 High Resolution Echelle Spectrometer and Automated Planet Finder RVs collected as part of the TESS-Keck Survey, and 51 High-Accuracy Radial velocity Planetary Searcher North RVs, we experiment with a joint TTV-RV fit. With seven possible transiting planets, TTVs, more than 400 RVs, and a stellar activity model, we posit that we may be presenting the most complex mass recovery of an exoplanet system in the literature to date. By combining TTVs and RVs, we minimized Gaussian process overfitting and retrieved new masses for this system: (mb−g=3.500.7+0.8,6.321.3+1.1,8.351.6+1.8,6.071.01+1.09,9.73.7+3.9,5.63.2+4.1M). We are unable to significantly detect the mass of the seventh planet candidate in the RVs, but we are able to loosely constrain a possible orbital period near 80 days. Future TESS observations might confirm the existence of a seventh planet in the system, better constrain the masses and orbital properties of the known exoplanets, and generally shine light on this scientifically interesting system.

     
    more » « less