- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
01000020000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Negrini, Elisa (3)
-
Miao, Jianwei (2)
-
Osher, Stanley J (2)
-
Pham, Minh (2)
-
Capogna, Luca (1)
-
Citti, Giovanna (1)
-
Davis, Damek (1)
-
Jacobs, Daniel (1)
-
Lu, Xingyuan (1)
-
Manekar, Raunak (1)
-
Srivastava, Jaideep (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2025
-
Manekar, Raunak ; Negrini, Elisa ; Pham, Minh ; Jacobs, Daniel ; Srivastava, Jaideep ; Osher, Stanley J ; Miao, Jianwei ( , IEEE Transactions on Image Processing)
-
Negrini, Elisa ; Citti, Giovanna ; Capogna, Luca ( , Springer Verlag)We present a new algorithm for learning unknown gov- erning equations from trajectory data, using a family of neural net- works. Given samples of solutions x(t) to an unknown dynamical system x ̇ (t) = f (t, x(t)), we approximate the function f using a family of neural networks. We express the equation in integral form and use Euler method to predict the solution at every successive time step using at each iter- ation a different neural network as a prior for f. This procedure yields M-1 time-independent networks, where M is the number of time steps at which x(t) is observed. Finally, we obtain a single function f(t,x(t)) by neural network interpolation. Unlike our earlier work, where we numer- ically computed the derivatives of data, and used them as target in a Lipschitz regularized neural network to approximate f, our new method avoids numerical differentiations, which are unstable in presence of noise. We test the new algorithm on multiple examples in a high-noise setting. We empirically show that generalization and recovery of the governing equation improve by adding a Lipschitz regularization term in our loss function and that this method improves our previous one especially in the high-noise regime, when numerical differentiation provides low qual- ity target data. Finally, we compare our results with other state of the art methods for system identification.more » « less