At elevated temperatures SnSe is reported to undergo a structural transition from the low symmetry orthorhombic GeS-type to a higher symmetry orthorhombic TlI-type. Although increasing symmetry should likewise increase lattice thermal conductivity, many experiments on single crystals and polycrystalline materials indicate that this is not the case. Here we present temperature dependent analysis of time-of-flight (TOF) neutron total scattering data in combination with theoretical modeling to probe the local to long-range evolution of the structure. We report that while SnSe is well characterized on average within the high symmetry space group above the transition, over length scales of a few unit cells SnSe remains better characterized in the low symmetry GeS-type space group. Our finding from robust modeling provides further insight into the curious case of a dynamic order-disorder phase transition in SnSe, a model consistent with the soft-phonon picture of the high thermoelectric power above the phase transition.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract The single-ion anisotropy and magnetic interactions in spin-ice systems give rise to unusual non-collinear spin textures, such as Pauling states and magnetic monopoles. The effective spin correlation strength (
J e f f ) determines the relative energies of the different spin-ice states. With this work, we display the capability of capacitive torque magnetometry in characterizing the magneto-chemical potential associated with monopole formation. We build a magnetic phase diagram of Ho2Ti2O7, and show that the magneto-chemical potential depends on the spin sublattice (α orβ ), i.e., the Pauling state, involved in the transition. Monte Carlo simulations using the dipolar-spin-ice Hamiltonian support our findings of a sublattice-dependent magneto-chemical potential, but the model underestimates theJ e f f for theβ -sublattice. Additional simulations, including next-nearest neighbor interactions (J 2), show that long-range exchange terms in the Hamiltonian are needed to describe the measurements. This demonstrates that torque magnetometry provides a sensitive test forJ e f f and the spin-spin interactions that contribute to it. -
Abstract: Thermoelectricity allows direct conversion between heat and electricity, providing alternatives for green energy technologies. Despite these advantages, for most materials the energy conversion efficiency is limited by the tendency for the electrical and thermal conductivity to be proportional to each other and the Seebeck coefficient to be small. Here we report counter examples, where the heavy fermion compounds Yb TM 2 Zn 20 ( TM = Co, Rh, Ir) exhibit enhanced thermoelectric performance including a large power factor ( PF = 74 μW/cm-K 2 ; TM = Ir) and a high figure of merit ( ZT = 0.07; TM = Ir) at 35 K. The combination of the strongly hybridized electronic state originating from the Yb f -electrons and the novel structural features (large unit cell and possible soft phonon modes) leads to high power factors and small thermal conductivity values. This demonstrates that with further optimization these systems could provide a platform for the next generation of low temperature thermoelectric materials.more » « less