skip to main content

Title: Investigation of the monopole magneto-chemical potential in spin ices using capacitive torque magnetometry

The single-ion anisotropy and magnetic interactions in spin-ice systems give rise to unusual non-collinear spin textures, such as Pauling states and magnetic monopoles. The effective spin correlation strength (Jeff) determines the relative energies of the different spin-ice states. With this work, we display the capability of capacitive torque magnetometry in characterizing the magneto-chemical potential associated with monopole formation. We build a magnetic phase diagram of Ho2Ti2O7, and show that the magneto-chemical potential depends on the spin sublattice (αorβ), i.e., the Pauling state, involved in the transition. Monte Carlo simulations using the dipolar-spin-ice Hamiltonian support our findings of a sublattice-dependent magneto-chemical potential, but the model underestimates theJefffor theβ-sublattice. Additional simulations, including next-nearest neighbor interactions (J2), show that long-range exchange terms in the Hamiltonian are needed to describe the measurements. This demonstrates that torque magnetometry provides a sensitive test forJeffand the spin-spin interactions that contribute to it.

; ; ; ; ; ; ; ;
Award ID(s):
2046570 1847887 2003117
Publication Date:
Journal Name:
Nature Communications
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nonlinear photocurrent in time-reversal invariant noncentrosymmetric systems such as ferroelectric semimetals sparked tremendous interest of utilizing nonlinear optics to characterize condensed matter with exotic phases. Here we provide a microscopic theory of two types of second-order nonlinear direct photocurrents, magnetic shift photocurrent (MSC) and magnetic injection photocurrent (MIC), as the counterparts of normal shift current (NSC) and normal injection current (NIC) in time-reversal symmetry and inversion symmetry broken systems. We show that MSC is mainly governed by shift vector and interband Berry curvature, and MIC is dominated by absorption strength and asymmetry of the group velocity difference at time-reversed ±kpoints. Taking$${\cal{P}}{\cal{T}}$$PT-symmetric magnetic topological quantum material bilayer antiferromagnetic (AFM) MnBi2Te4as an example, we predict the presence of large MIC in the terahertz (THz) frequency regime which can be switched between two AFM states with time-reversed spin orderings upon magnetic transition. In addition, external electric field breaks$${\cal{P}}{\cal{T}}$$PTsymmetry and enables large NSC response in bilayer AFM MnBi2Te4, which can be switched by external electric field. Remarkably, both MIC and NSC are highly tunable under varying electric field due to the field-induced large Rashba and Zeeman splitting, resulting in large nonlinear photocurrent response down to a few THz regime, suggesting bilayer AFM-zMnBi2Te4as amore »tunable platform with rich THz and magneto-optoelectronic applications. Our results reveal that nonlinear photocurrent responses governed by NSC, NIC, MSC, and MIC provide a powerful tool for deciphering magnetic structures and interactions which could be particularly fruitful for probing and understanding magnetic topological quantum materials.

    « less
  2. Abstract

    Recently, Yb-based triangular-lattice antiferromagnets have garnered significant interest as possible quantum spin-liquid candidates. One example is YbMgGaO4, which showed many promising spin-liquid features, but also possesses a high degree of disorder owing to site-mixing between the non-magnetic cations. To further elucidate the role of chemical disorder and to explore the phase diagram of these materials in applied field, we present neutron scattering and sensitive magnetometry measurements of the closely related compound, YbZnGaO4. Our results suggest a difference in magnetic anisotropy between the two compounds, and we use key observations of the magnetic phase crossover to motivate an exploration of the field- and exchange parameter-dependent phase diagram, providing an expanded view of the available magnetic states in applied field. This enriched map of the phase space serves as a basis to restrict the values of parameters describing the magnetic Hamiltonian with broad application to recently discovered related materials.

  3. Abstract

    Owing to their overall low energy scales, flexible molecular architectures, and ease of chemical substitution, molecule-based multiferroics are extraordinarily responsive to external stimuli and exhibit remarkably rich phase diagrams. Even so, the stability and microscopic properties of various magnetic states in close proximity to quantum critical points are highly under-explored in these materials. Inspired by these opportunities, we combined pulsed-field magnetization, first-principles calculations, and numerical simulations to reveal the magnetic field–temperature (BT) phase diagram of multiferroic (NH4)2FeCl5⋅H2O. In this system, a network of intermolecular hydrogen and halogen bonds creates a competing set of exchange interactions that generates additional structure in the phase diagram—both in the vicinity of the spin flop and near the 30 T transition to the fully saturated state. Consequently, the phase diagrams of (NH4)2FeCl5⋅H2O and its deuterated analog are much more complex than those of other molecule-based multiferroics. The entire series of coupled electric and magnetic transitions can be accessed with a powered magnet, opening the door to exploration and control of properties in this and related materials.

  4. Abstract

    PdTe is a superconductor withTc ~ 4.25 K. Recently, evidence for bulk-nodal and surface-nodeless gap features has been reported in PdTe. Here, we investigate the physical properties of PdTe in both the normal and superconducting states via specific heat and magnetic torque measurements and first-principles calculations. BelowTc, the electronic specific heat initially decreases inT3behavior (1.5 K < T < Tc) then exponentially decays. Using the two-band model, the superconducting specific heat can be well described with two energy gaps: one is 0.372 meV and another 1.93 meV. The calculated bulk band structure consists of two electron bands (α and β) and two hole bands (γ and η) at the Fermi level. Experimental detection of the de Haas-van Alphen (dHvA) oscillations allows us to identify four frequencies (Fα = 65 T,Fβ = 658 T,Fγ = 1154 T, andFη = 1867 T forH//a), consistent with theoretical predictions. Nontrivial α and β bands are further identified via both calculations and the angle dependence of the dHvA oscillations. Our results suggest that PdTe is a candidate for unconventional superconductivity.

  5. Abstract

    The crystal structure, electron energy-loss spectroscopy (EELS), heat capacity, and anisotropic magnetic and resistivity measurements are reported for Sn flux grown single crystals of orthorhombic Pr2Co3Ge5(U2Co3Si5-type,Ibam). Our findings show thato-Pr2Co3Ge5hosts nearly trivalent Pr ions, as evidenced by EELS and fits to temperature dependent magnetic susceptibility measurements. Complex magnetic ordering with a partially spin-polarized state emerges nearTsp= 32 K, with a spin reconfiguration transition nearTM= 15 K. Heat capacity measurements show that the phase transitions appear as broad peaks in the vicinity ofTspandTM. The magnetic entropy further reveals that crystal electric field splitting lifts the Hund’s rule degeneracy at low temperatures. Taken together, these measurements show that Pr2Co3Ge5is an environment for complexfstate magnetism with potential strongly correlated electron states.