skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nguyen, A_T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Submarine melting at Greenland's marine terminating glaciers is a crucial, yet poorly constrained process in the coupled ice‐ocean system. Application of Antarctic melt rate representations, derived for floating glacier tongues, to non‐floating marine terminating glaciers commonly found in Greenland, results in a dramatic underestimation of submarine melting. Here, we revisit the physical theory underlying melt rate parameterizations and leverage recently published observational data to derive a novel melt rate parameterization. This is the first parameterization that (a) consistently comprises both convective‐ and shear‐dominated melt regimes, (b) includes coefficients quantitatively constrained using observational data, and (c) is applicable to any vertical glacier front. We show that, compared to the current state‐of‐the‐art approach, the scheme provides an improved fit to observed melt rates on the scale of the terminating front, offering an opportunity to incorporate this critical missing forcing into ocean circulation models. 
    more » « less