skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nguyen, Nhat_Phat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Here, we present results of a computational study of electronic, magnetic, and structural properties of FeVTaAl and FeCrZrAl, quaternary Heusler alloys that have been recently reported to exhibit spin-gapless semiconducting behavior. Our calculations indicate that these materials may crystallize in regular Heusler cubic structure, which has a significantly lower energy than the inverted Heusler cubic phase. Both FeVTaAl and FeCrZrAl exhibit ferromagnetic alignment, with an integer magnetic moment per unit cell at equilibrium lattice constant. Band structure analysis reveals that while both FeVTaAl and FeCrZrAl indeed exhibit nearly spin-gapless semiconducting electronic structure at their optimal lattice parameters, FeVTaAl is a 100% spin-polarized semimetal, while FeCrZrAl is a magnetic semiconductor. Our calculations indicate that expansion of the unit cell volume retains 100% spin-polarization of both compounds. In particular, both FeVTaAl and FeCrZrAl are 100% spin-polarized magnetic semiconductors at the largest considered lattice constant. At the same time, at smaller lattice parameters, both compounds exhibit a more complex electronic structure, somewhat resembling half-metallic properties. Thus, both of these alloys may be potentially useful for practical applications in spin-based electronics, but their electronic structure is very sensitive to the external pressure. We hope that these results will stimulate experimental efforts to synthesize these materials. 
    more » « less