skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ni, Qingling"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The growth of supermassive black holes is strongly linked to their galaxies. It has been shown that the population mean black hole accretion rate ( BHAR ¯ ) primarily correlates with the galaxy stellar mass (M) and redshift for the general galaxy population. This work aims to provide the best measurements of BHAR ¯ as a function ofMand redshift over ranges of 109.5<M< 1012Mandz< 4. We compile an unprecedentedly large sample with 8000 active galactic nuclei (AGNs) and 1.3 million normal galaxies from nine high-quality survey fields following a wedding cake design. We further develop a semiparametric Bayesian method that can reasonably estimate BHAR ¯ and the corresponding uncertainties, even for sparsely populated regions in the parameter space. BHAR ¯ is constrained by X-ray surveys sampling the AGN accretion power and UV-to-infrared multiwavelength surveys sampling the galaxy population. Our results can independently predict the X-ray luminosity function (XLF) from the galaxy stellar mass function (SMF), and the prediction is consistent with the observed XLF. We also try adding external constraints from the observed SMF and XLF. We further measure BHAR ¯ for star-forming and quiescent galaxies and show that star-forming BHAR ¯ is generally larger than or at least comparable to the quiescent BHAR ¯
    more » « less
  2. Abstract A fundamental question in galaxy and black hole evolution remains how galaxies and their supermassive black holes have evolved together over cosmic time. Specifically, it is still unclear how the position of X-ray active galactic nucleus (AGN) host galaxies with respect to the star-forming main sequence (MS) may change with the X-ray luminosity (LX) of the AGN or the stellar mass (M) of the host galaxy. We use data from the XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS) to probe this issue. XMM-SERVS is covered by the largest medium-depth X-ray survey (with superb supporting multiwavelength data) and thus contains the largest sample to date for study. To ensure consistency, we locally derive the MS from a large reference galaxy sample. In our analysis, we demonstrate that the turnover of the galaxy MS does not allow reliable conclusions to be drawn for high-mass AGNs, and we establish a robust safe regime where the results do not depend upon the choice of MS definition. Under this framework, our results indicate that less massive AGN host galaxies ( log M 9.5 10.5 M ) generally possess enhanced star formation rates compared to their normal-galaxy counterparts while the more massive AGN host galaxies ( log M 10.5 11.5 M ) lie on or below the star-forming MS. Further, we propose an empirical model for how the placement of an AGN with respect to the MS (SFRnorm) evolves as a function of bothMandLX
    more » « less
  3. ABSTRACT The Australia Telescope Large Area Survey (ATLAS) and the VLA survey in the XMM-LSS/VIDEO deep field provide deep (≈15 $$\mu$$ Jy beam−1) and high-resolution (≈4.5–8 arcsec) radio coverage of the three XMM-SERVS fields (W-CDF-S, ELAIS-S1, and XMM-LSS). These data cover a total sky area of 11.3 deg2 and contain ≈11 000 radio components. Furthermore, about 3 deg2 of the XMM-LSS field also has deeper MIGHTEE data that achieve a median RMS of 5.6 $$\mu$$ Jy beam−1 and detect more than 20 000 radio sources. We analyse all these radio data and find source counterparts at other wavebands utilizing deep optical and infrared (IR) surveys. The nature of these radio sources is studied using radio-band properties (spectral slope and morphology) and the IR–radio correlation. Radio AGNs are selected and compared with those selected using other methods (e.g. X-ray). We found 1656 new AGNs that were not selected using X-ray and/or MIR methods. We constrain the FIR-to-UV SEDs of radio AGNs using cigale and investigate the dependence of radio AGN fraction upon galaxy stellar mass and star formation rate. 
    more » « less
  4. Abstract We present a catalog of multi-band forced photometry in the CDFS and XMM-LSS fields. We used The Tractor image-modeling software to produce de-blended photometry across 13 to 15 optical/infrared bands and determine photometric redshifts. Our catalog, which is publicly available on IRSA, contains ∼1.5 million sources and covers a total area of ∼9 deg 2 . 
    more » « less
  5. Abstract Recent studies have revealed a strong relation between the sample-averaged black hole (BH) accretion rate (BHAR) and star formation rate (SFR) among bulge-dominated galaxies—i.e., “lockstep” BH–bulge growth—in the distant universe. This relation might be closely connected to the BH–bulge mass correlation observed in the local universe. To further understand BH–bulge coevolution, we present Atacama Large Millimeter/submillimeter Array (ALMA) CO(2–1) or CO(3–2) observations of seven star-forming bulge-dominated galaxies at z = 0.5–2.5. Using the ALMA data, we detect significant (>3 σ ) CO emission from four objects. For our sample of seven galaxies, we measure (or constrain with upper limits) their CO line fluxes and estimate their molecular gas masses ( M gas ). We also estimate their stellar masses ( M star ) and SFRs, by modeling their spectral energy distributions. Using these physical properties, we derive the gas depletion timescales ( τ dep ≡ M gas /SFR) and compare them with the bulge/BH growth timescales ( τ grow ≡ M star /SFR ∼ M BH /BHAR). Our sample generally has τ dep shorter than τ grow by a median factor of ≳4, indicating that the cold gas will be depleted before significant bulge/BH growth takes place. This result suggests that BH–bulge lockstep growth is mainly responsible for maintaining the mass relation, not creating it. We note that our sample is small and limited to z < 2.5; JWST and ALMA will be able to probe to higher redshifts in the near future. 
    more » « less
  6. Abstract W-CDF-S, ELAIS-S1, and XMM-LSS will be three Deep-Drilling Fields (DDFs) of the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST), but their extensive multiwavelength data have not been fully utilized as done in the COSMOS field, another LSST DDF. To prepare for future science, we fit source spectral energy distributions (SEDs) from X-ray to far-infrared in these three fields mainly to derive galaxy stellar masses and star formation rates. We use CIGALE v2022.0, a code that has been regularly developed and evaluated, for the SED fitting. Our catalog includes 0.8 million sources covering 4.9 deg 2 in W-CDF-S, 0.8 million sources covering 3.4 deg 2 in ELAIS-S1, and 1.2 million sources covering 4.9 deg 2 in XMM-LSS. Besides fitting normal galaxies, we also select candidates that may host active galactic nuclei (AGNs) or are experiencing recent star formation variations and use models specifically designed for these sources to fit their SEDs; this increases the utility of our catalog for various projects in the future. We calibrate our measurements by comparison with those in well-studied smaller regions and briefly discuss the implications of our results. We also perform detailed tests of the completeness and purity of SED-selected AGNs. Our data can be retrieved from a public website. 
    more » « less
  7. Abstract We perform X-ray spectral analyses to derive the characteristics (e.g., column density, X-ray luminosity) of ≈10,200 active galactic nuclei (AGNs) in the XMM-Spitzer Extragalactic Representative Volume Survey, which was designed to investigate the growth of supermassive black holes across a wide dynamic range of cosmic environments. Using physical torus models (e.g., Borus02) and a Bayesian approach, we uncover 22 representative Compton-thick (CT;NH> 1.5 × 1024cm−2) AGN candidates with good signal-to-noise ratios as well as a large sample of 136 heavily obscured AGNs. We also find an increasing CT fraction (fCT) from low (z< 0.75) to high (z> 0.75) redshift. Our CT candidates tend to show hard X-ray spectral shapes and dust extinction in their spectral energy distribution fits, which may shed light on the connection between AGN obscuration and host-galaxy evolution. 
    more » « less
  8. Abstract Active dwarf galaxies are important because they contribute to the evolution of dwarf galaxies and can reveal their hosted massive black holes. However, the sample size of such sources beyond the local universe is still highly limited. In this work, we search for active dwarf galaxies in the recently completed XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS). XMM-SERVS is currently the largest medium-depth X-ray survey covering 13 deg2in three extragalactic fields, which all have well-characterized multiwavelength information. After considering several factors that may lead to misidentifications, we identify 73 active dwarf galaxies atz< 1, which constitutes the currently largest X-ray-selected sample beyond the local universe. Our sources are generally less obscured than predictions based on the massive-AGN (active galactic nucleus) X-ray luminosity function and have a low radio-excess fraction. We find that our sources reside in environments similar to those of inactive dwarf galaxies. We further quantify the accretion distribution of the dwarf-galaxy population after considering various selection effects and find that it decreases with X-ray luminosity, but redshift evolution cannot be statistically confirmed. Depending on how we define an AGN, the active fraction may or may not show a strong dependence on stellar mass. Their Eddington ratios and X-ray bolometric corrections significantly deviate from the expected relation, which is likely caused by several large underlying systematic biases when estimating the relevant parameters for dwarf galaxies. Throughout this work, we also highlight problems in reliably measuring photometric redshifts and overcoming strong selection effects for distant active dwarf galaxies. 
    more » « less