skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ni, Xingyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Magnetoelastic thin shells exhibit great potential in realizing versatile functionalities through a broad range of combination of material stiffness, remnant magnetization intensity, and external magnetic stimuli. In this paper, we propose a novel computational method for forward simulation and inverse design of magnetoelastic thin shells. Our system consists of two key components of forward simulation and backward optimization. On the simulation side, we have developed a new continuum mechanics model based on the Kirchhoff-Love thin-shell model to characterize the behaviors of a megnetolelastic thin shell under external magnetic stimuli. Based on this model, we proposed an implicit numerical simulator facilitated by the magnetic energy Hessian to treat the elastic and magnetic stresses within a unified framework, which is versatile to incorporation with other thin shell models. On the optimization side, we have devised a new differentiable simulation framework equipped with an efficient adjoint formula to accommodate various PDE-constraint, inverse design problems of magnetoelastic thin-shell structures, in both static and dynamic settings. It also encompasses applications of magnetoelastic soft robots, functional Origami, artworks, and meta-material designs. We demonstrate the efficacy of our framework by designing and simulating a broad array of magnetoelastic thin-shell objects that manifest complicated interactions between magnetic fields, materials, and control policies. 
    more » « less