Kirchhoff-Love shells are commonly used in many branches of engineering, including in computer graphics, but have so far been simulated only under limited nonlinear material options. We derive the Kirchhoff-Love thin-shell mechanical energy for an arbitrary 3D volumetric hyperelastic material, including isotropic materials, anisotropic materials, and materials whereby the energy includes both even and odd powers of the principal stretches. We do this by starting with any 3D hyperelastic material, and then analytically computing the corresponding thin-shell energy limit. This explicitly identifies and separates in-plane stretching and bending terms, and avoids numerical quadrature. Thus, in-plane stretching and bending are shown to originate from one and the same process (volumetric elasticity of thin objects), as opposed to from two separate processes as done traditionally in cloth simulation. Because we can simulate materials that include both even and odd powers of stretches, we can accommodate standard mesh distortion energies previously employed for 3D solid simulations, such as Symmetric ARAP and Co-rotational materials. We relate the terms of our energy to those of prior work on Kirchhoff-Love thin-shells in computer graphics that assumed small in-plane stretches, and demonstrate the visual difference due to the presence of our exact stretching and bending terms. Furthermore, our formulation allows us to categorize all distinct hyperelastic Kirchhoff-Love thin-shell energies. Specifically, we prove that for Kirchhoff-Love thin-shells, the space of all hyperelastic materials collapses to two-dimensional hyperelastic materials. This observation enables us to create an interface for the design of thin-shell Kirchhoff-Love mechanical energies, which in turn enables us to create thin-shell materials that exhibit arbitrary stiffness profiles under large deformations.
more »
« less
Simulation and optimization of magnetoelastic thin shells
Magnetoelastic thin shells exhibit great potential in realizing versatile functionalities through a broad range of combination of material stiffness, remnant magnetization intensity, and external magnetic stimuli. In this paper, we propose a novel computational method for forward simulation and inverse design of magnetoelastic thin shells. Our system consists of two key components of forward simulation and backward optimization. On the simulation side, we have developed a new continuum mechanics model based on the Kirchhoff-Love thin-shell model to characterize the behaviors of a megnetolelastic thin shell under external magnetic stimuli. Based on this model, we proposed an implicit numerical simulator facilitated by the magnetic energy Hessian to treat the elastic and magnetic stresses within a unified framework, which is versatile to incorporation with other thin shell models. On the optimization side, we have devised a new differentiable simulation framework equipped with an efficient adjoint formula to accommodate various PDE-constraint, inverse design problems of magnetoelastic thin-shell structures, in both static and dynamic settings. It also encompasses applications of magnetoelastic soft robots, functional Origami, artworks, and meta-material designs. We demonstrate the efficacy of our framework by designing and simulating a broad array of magnetoelastic thin-shell objects that manifest complicated interactions between magnetic fields, materials, and control policies.
more »
« less
- Award ID(s):
- 1919647
- PAR ID:
- 10359113
- Date Published:
- Journal Name:
- ACM Transactions on Graphics
- Volume:
- 41
- Issue:
- 4
- ISSN:
- 0730-0301
- Page Range / eLocation ID:
- 1 to 18
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In the rapidly developing field of nanophotonics, machine learning (ML) methods facilitate the multi‐parameter optimization processes and serve as a valuable technique in tackling inverse design challenges by predicting nanostructure designs that satisfy specific optical property criteria. However, while considerable efforts have been devoted to applying ML for designing the overall spectral response of photonic nanostructures, often without elucidating the underlying physical mechanisms, physics‐based models remain largely unexplored. Here, physics‐empowered forward and inverse ML models to design dielectric meta‐atoms with controlled multipolar responses are introduced. By utilizing the multipole expansion theory, the forward model efficiently predicts the scattering response of meta‐atoms with diverse shapes and the inverse model designs meta‐atoms that possess the desired multipole resonances. Implementing the inverse design model, uniquely shaped meta‐atoms with enhanced higher‐order magnetic resonances and those supporting a super‐scattering regime of light‐matter interactions resulting in nearly five‐fold enhancement of scattering beyond the single‐channel limit are designed. Finally, an ML model to predict the wavelength‐dependent electric field distribution inside and near the meta‐atom is developed. The proposed ML based models will likely facilitate uncovering new regimes of linear and nonlinear light‐matter interaction at the nanoscale as well as a versatile toolkit for nanophotonic design.more » « less
-
Abstract Shape morphing that transforms morphologies in response to stimuli is crucial for future multifunctional systems. While kirigami holds great promise in enhancing shape-morphing, existing designs primarily focus on kinematics and overlook the underlying physics. This study introduces a differentiable inverse design framework that considers the physical interplay between geometry, materials, and stimuli of active kirigami, made by soft material embedded with magnetic particles, to realize target shape-morphing upon magnetic excitation. We achieve this by combining differentiable kinematics and energy models into a constrained optimization, simultaneously designing the cuts and magnetization orientations to ensure kinematic and physical feasibility. Complex kirigami designs are obtained automatically with unparalleled efficiency, which can be remotely controlled to morph into intricate target shapes and even multiple states. The proposed framework can be extended to accommodate various active systems, bridging geometry and physics to push the frontiers in shape-morphing applications, like flexible electronics and minimally invasive surgery.more » « less
-
null (Ed.)Ferromagnetic soft materials can generate flexible mobility and changeable configurations under an external magnetic field. They are used in a wide variety of applications, such as soft robots, compliant actuators, flexible electronics, and bionic medical devices. The magnetic field enables fast and biologically safe remote control of the ferromagnetic soft material. The shape changes of ferromagnetic soft elastomers are driven by the ferromagnetic particles embedded in the matrix of a soft elastomer. The external magnetic field induces a magnetic torque on the magnetized soft material, causing it to deform. To achieve the desired motion, the soft active structure can be designed by tailoring the layouts of the ferromagnetic soft elastomers. This paper aims to optimize multi-material ferromagnetic actuators. Multi-material ferromagnetic flexible actuators are optimized for the desired kinematic performance using the reconciled level set method. This type of magnetically driven actuator can carry out more complex shape transformations by introducing ferromagnetic soft materials with more than one magnetization direction. Whereas many soft active actuators exist in the form of thin shells, the newly proposed extended level set method (X-LSM) is employed to perform conformal topology optimization of ferromagnetic soft actuators on the manifolds. The objective function comprises two sub-objective functions, one for the kinematic requirement and the other for minimal compliance. Shape sensitivity analysis is derived using the material time derivative and the adjoint variable method. Three examples are provided to demonstrate the effectiveness of the proposed framework.more » « less
-
Abstract The properties of materials and structures typically remain fixed after being designed and manufactured. There is a growing interest in systems with the capability of altering their behaviors without changing geometries or material constitutions, because such reprogrammable behaviors could unlock multiple functionalities within a single design. We introduce an optimization-driven approach, based on multi-objective magneto-mechanical topology optimization, to design magneto-active metamaterials and structures whose properties can be seamlessly reprogrammed by switching on and off the external stimuli fields. This optimized material system exhibits one response under pure mechanical loading, and switches to a distinct response under joint mechanical and magnetic stimuli. We discover and experimentally demonstrate magneto-mechanical metamaterials and metastructures that realize a wide range of reprogrammable responses, including multi-functional actuation responses, adaptable snap-buckling behaviors, switchable deformation modes, and tunable bistability. The proposed approach paves the way for promising applications such as magnetic actuators, soft robots, and energy harvesters.more » « less
An official website of the United States government

