Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 3, 2025
-
Mapping 3D airflow fields is important for many HVAC, industrial, medical, and home applications. However, current approaches are expensive and time-consuming. We present Anemoi, a sub-$100 drone-based system for autonomously mapping 3D airflow fields in indoor environments. Anemoi leverages the effects of airflow on motor control signals to estimate the magnitude and direction of wind at any given point in space. We introduce an exploration algorithm for selecting optimal waypoints that minimize overall airflow estimation uncertainty. We demonstrate through microbenchmarks and real deployments that Anemoi is able to estimate wind speed and direction with errors up to 0.41 m/s and 25.1° lower than the existing state of the art and map 3D airflow fields with an average RMS error of 0.73 m/s.more » « less
-
Running with a consistent cadence (number of steps per minute) is important for runners to help reduce risk of injury, improve running form, and enhance overall bio-mechanical efficiency. We introduce CaNRun, a non-contact and acoustic-based system that uses sound captured from a mobile device placed on a treadmill to predict and report running cadence. CaNRun obviates the need for runners to utilize wearable devices or carry a mobile device on their body while running on a treadmill. CaNRun leverages a long short-term memory (LSTM) network to extract steps observed from the microphone to robustly estimate cadence. Through an 8-person study, we demonstrate that CaNRun achieves cadence detection accuracy without calibration for individual users, which is comparable to the accuracy of the Apple Watch despite being non-contact.more » « less
-
Domain-specific sensor deployments are critical to enabling various IoT applications. Existing solutions for quickly deploying sensing systems require significant amount of work and time, even for experienced engineers. We propose LegoSENSE, a low-cost open-source and modular platform, built on top of the widely popular Raspberry Pi single-board computer, that makes it simple for anyone to rapidly set up and deploy a customized sensing solution for application specific IoT deployments. In addition, the ‘plug and play’ and ‘mix and match’ functionality of LegoSENSE makes the sensor modules reusable, and allows them to be mixed and matched to serve a variety of needs. We show, through a series of user studies, that LegoSENSE enables users without engineering background to deploy a wide range of applications up to 9 × faster than experienced engineers without the use of LegoSENSE. We open-source the hardware and software designs to foster an ever-evolving community, enabling IoT applications for enthusiasts, students, scientists, and researchers across various application domains with or without prior experiences with embedded platforms or coding.more » « less
-
The fast development of electric vehicles (EV) and EV chargers introduces many factors that affect the grid. EV charging and charge scheduling also bring challenges to EV drivers and grid operators. In this work, we propose a human-centric, data-driven, city-scale, multivariate optimization approach for the EV-interfaced grid. This approach takes into account user historical driving and charging habits, user preferences, EV characteristics, city-scale mobility, EV charger availability and price, and grid capacity. The user preferences include the trade-off between cost and time to charge, as well as incentives to participate in different energy-saving programs. We leverage deep reinforcement learning (DRL) to make recommendations to EV drivers and optimize their welfare while enhancing grid performance.more » « less
-
In this demonstration, in collaboration with licensed therapists, we introduce an AI therapist that takes advantage of the smart-home environment to screen day-to-day functioning and infer mental wellness of an occupant. Our system can assess a user's daily functioning and mental wellness based on a combination of direct conversation with users and information obtained from smart home devices using psychological rubrics proposed in [1]. We demonstrate that our system can converse with a user in a natural way (through a smartphone or smart speaker) and analyze a user's response semantically and sentimentally. In addition, we show that our system can provide preliminary interventions to help improve the user's wellness. In particular, when abnormal behavior is detected during the conversation or by smart home devices, the system provides psychotherapeutic consolations during the conversation and will check on the occupant's condition by actuating a home robot.more » « less
-
The growth of smart devices is making typical homes more intelligent. In this work, in collaboration with therapists, we introduce a home-based AI therapist that takes advantage of the smart home environment to screen the day-to-day functioning and infer mental wellness of an occupant. Unlike existing “chatbot” works that identify the mental status of users through conversation, our AI therapist additionally leverages smart devices and sensors throughout the home to infer mental well-being and assesses a user's daily functioning. We propose a series of 37 dimensions of daily functioning, that our system observes through conversing with the user and detecting daily activity events using sensors and smart sensors throughout the home. Our system utilizes these 37 dimensions in conjunction with novel natural language processing architectures to detect abnormalities in mental status (e.g., angry or depressed), well-being, and daily functioning and generate responses to console users when abnormalities are detected. Through a series of user studies, we demonstrate that our system can converse with a user naturally, accurately detect abnormalities in well-being, and provide appropriate responses consoling users.more » « less
-
We present SoFIT, an easily-deployed and privacy-preserving camera network system for occupant tracking. Unlike traditional camera network-based systems, SoFIT does not require a person to calibrate the network or provide real-world references. This enables anyone, including non-professionals, to install SoFIT. Once installed, SoFIT automatically localizes cameras within the network and generates the floor map leveraging movements of people using the space in daily life, before using the floor map and camera locations to track occupants throughout the environment. We demonstrate through a series of deployments that SoFIT can localize cameras with less than 4.8cm error, generate floor maps with 85% similarity to actual floor maps, and track occupants with less than 7.8cm error.more » « less