skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: SoFIT: Self-Orienting Camera Network for Floor Mapping and Indoor Tracking
We present SoFIT, an easily-deployed and privacy-preserving camera network system for occupant tracking. Unlike traditional camera network-based systems, SoFIT does not require a person to calibrate the network or provide real-world references. This enables anyone, including non-professionals, to install SoFIT. Once installed, SoFIT automatically localizes cameras within the network and generates the floor map leveraging movements of people using the space in daily life, before using the floor map and camera locations to track occupants throughout the environment. We demonstrate through a series of deployments that SoFIT can localize cameras with less than 4.8cm error, generate floor maps with 85% similarity to actual floor maps, and track occupants with less than 7.8cm error.  more » « less
Award ID(s):
2218809 1943396 1837022
PAR ID:
10416035
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
18th International Conference on Distributed Computing in Sensor Systems (DCOSS)
Page Range / eLocation ID:
93 to 100
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. About 40% of the energy produced globally is consumed within buildings, primarily for providing occupants with comfortable work and living spaces. However, despite the significant impacts of such energy consumption on the environment, the lack of thermal comfort among occupants is a common problem that can lead to health complications and reduced productivity. To address this problem, it is particularly important to understand occupants’ thermal comfort in real-time to dynamically control the environment. This study investigates an infrared thermal camera network to extract skin temperature features and predict occupants’ thermal preferences at flexible distances and angles. This study distinguishes from existing methods in two ways: (1) the proposed method is a non-intrusive data collection approach which does not require human participation or personal devices; (2) it uses low-cost thermal cameras and RGB-D sensors which can be rapidly reconfigured to adapt to various settings and has little or no hardware infrastructure dependency. The proposed camera network is verified using the facial skin temperature collected from 16 subjects in a multi-occupancy experiment. The results show that all 16 subjects observed a statistically higher skin temperature as the room temperature increases. The variations in skin temperature also correspond to the distinct comfort states reported by the subjects. The post-experiment evaluation suggests that the networked thermal cameras have a minimal interruption of building occupants. The proposed approach demonstrates the potential to transition the human physiological data collection from an intrusive and wearable device-based approach to a truly non-intrusive and scalable approach. 
    more » « less
  2. null (Ed.)
    Wireless security cameras are integral components of security systems used by military installations, corporations, and, due to their increased affordability, many private homes. These cameras commonly employ motion sensors to identify that something is occurring in their fields of vision before starting to record and notifying the property owner of the activity. In this paper, we discover that the motion sensing action can disclose the location of the camera through a novel wireless camera localization technique we call MotionCompass. In short, a user who aims to avoid surveillance can find a hidden camera by creating motion stimuli and sniffing wireless traffic for a response to that stimuli. With the motion trajectories within the motion detection zone, the exact location of the camera can be then computed. We develop an Android app to implement MotionCompass. Our extensive experiments using the developed app and 18 popular wireless security cameras demonstrate that for cameras with one motion sensor, MotionCompass can attain a mean localization error of around 5 cm with less than 140 seconds. This localization technique builds upon existing work that detects the existence of hidden cameras, to pinpoint their exact location and area of surveillance. 
    more » « less
  3. We consider a scenario in which an autonomous vehicle equipped with a downward-facing camera operates in a 3D environment and is tasked with searching for an unknown number of stationary targets on the 2D floor of the environment. The key challenge is to minimize the search time while ensuring a high detection accuracy. We model the sensing field using a multi-fidelity Gaussian process that systematically describes the sensing information available at different altitudes from the floor. Based on the sensing model, we design a novel algorithm called Expedited Multi-Target Search (EMTS) that (i) addresses the coverage-accuracy trade-off: sampling at locations farther from the floor provides a wider field of view but less accurate measurements, (ii) computes an occupancy map of the floor within a prescribed accuracy and quickly eliminates unoccupied regions from the search space, and (iii) travels efficiently to collect the required samples for target detection. We rigorously analyze the algorithm and establish formal guarantees on the target detection accuracy and the detection time. We illustrate the algorithm using a simulated multi-target search scenario. 
    more » « less
  4. This paper proposes a system architecture for tracking multiple ground-based objects using a team of unmanned air systems (UAS). In the architecture pipeline, video data is processed by each UAS to detect motion in the image frame. The ground-based location of the detected motion is estimated using a geolocation algorithm. The subsequent data points are then process by the recently introduced Recursive RANSAC (R-RANSASC) algorithm to produce a set of tracks. These tracks are then communicated over the network and the error in the coordinate frames between vehicles must be estimated. After the tracks have been placed in the same coordinate frame, a track-to-track association algorithm is used to determine which tracks in each camera correspond to tracks in other cameras. Associated tracks are then fused using a distributed information filter. The proposed method is demonstrated on data collected from two multi-rotors tracking a person walking on the ground. 
    more » « less
  5. Building occupancy information is significant for a variety of reasons, from allocation of resources in smart buildings to responding during emergency situations. As most people spend more than 90% of their time indoors, a comfortable indoor environment is crucial. To ensure comfort, traditional HVAC systems condition rooms assuming maximum occupancy, accounting for more than 50% of buildings’ energy budgets in the US. Occupancy level is a key factor in ensuring energy efficiency, as occupancy-controlled HVAC systems can reduce energy waste by conditioning rooms based on actual usage. Numerous studies have focused on developing occupancy estimation models leveraging existing sensors, with camera-based methods gaining popularity due to their high precision and widespread availability. However, the main concern with using cameras for occupancy estimation is the potential violation of occupants’ privacy. Unlike previous video-/image-based occupancy estimation methods, we addressed the issue of occupants’ privacy in this work by proposing and investigating both motion-based and motion-independent occupancy counting methods on intentionally blurred video frames. Our proposed approach included the development of a motion-based technique that inherently preserves privacy, as well as motion-independent techniques such as detection-based and density-estimation-based methods. To improve the accuracy of the motion-independent approaches, we utilized deblurring methods: an iterative statistical technique and a deep-learning-based method. Furthermore, we conducted an analysis of the privacy implications of our motion-independent occupancy counting system by comparing the original, blurred, and deblurred frames using different image quality assessment metrics. This analysis provided insights into the trade-off between occupancy estimation accuracy and the preservation of occupants’ visual privacy. The combination of iterative statistical deblurring and density estimation achieved a 16.29% counting error, outperforming our other proposed approaches while preserving occupants’ visual privacy to a certain extent. Our multifaceted approach aims to contribute to the field of occupancy estimation by proposing a solution that seeks to balance the trade-off between accuracy and privacy. While further research is needed to fully address this complex issue, our work provides insights and a step towards a more privacy-aware occupancy estimation system.

     
    more » « less