Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The detection of GW170817/AT2017gfo inaugurated an era of multimessenger astrophysics, in which gravitational-wave and multiwavelength photon observations complement one another to provide unique insight into astrophysical systems. A broad theoretical consensus exists, in which the photon phenomenology of neutron star mergers largely rests upon the evolution of the small amount of matter left on bound orbits around the black hole or massive neutron star remaining after the merger. Because this accretion disk is far from inflow equilibrium, its subsequent evolution depends very strongly on its initial state, yet very little is known about how this state is determined. Using both snapshot and tracer particle data from a numerical relativity/MHD simulation of an equal-mass neutron star merger that collapses to a black hole, we show how gravitational forces arising in a nonaxisymmetric, dynamical spacetime supplement hydrodynamical effects in shaping the initial structure of the bound debris disk. The work done by hydrodynamical forces is ∼10 times greater than that due to time-dependent gravity. Although gravitational torques prior to remnant relaxation are an order of magnitude larger than hydrodynamical torques, their intrinsic sign symmetry leads to strong cancellation; as a result, hydrodynamical and gravitational torques have a comparable effect. We also show that the debris disk’s initial specific angular momentum distribution is sharply peaked at roughly the specific angular momentum of the merged neutron star’s outer layers, a fewrgc, and identify the regulating mechanism.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Abstract Accretion of debris seems to be the natural mechanism to power the radiation emitted during a tidal disruption event (TDE), in which a supermassive black hole tears apart a star. However, this requires the prompt formation of a compact accretion disk. Here, using a fully relativistic global simulation for the long-term evolution of debris in a TDE with realistic initial conditions, we show that at most a tiny fraction of the bound mass enters such a disk on the timescale of observed flares. To “circularize” most of the bound mass entails an increase in the binding energy of that mass by a factor of ∼30; we find at most an order-unity change. Our simulation suggests it would take a timescale comparable to a few tens of the characteristic mass fallback time to dissipate enough energy for “circularization.” Instead, the bound debris forms an extended eccentric accretion flow with eccentricity ≃0.4–0.5 by ∼two fallback times. Although the energy dissipated in shocks in this large-scale flow is much smaller than the “circularization” energy, it matches the observed radiated energy very well. Nonetheless, the impact of shocks is not strong enough to unbind initially bound debris into an outflow.more » « less
-
Abstract Many studies have found that neutron star mergers leave a fraction of the stars’ mass in bound orbits surrounding the resulting massive neutron star or black hole. This mass is a site ofr-process nucleosynthesis and can generate a wind that contributes to a kilonova. However, comparatively little is known about the dynamics determining its mass or initial structure. Here we begin to investigate these questions, starting with the origin of the disk mass. Using tracer particle as well as discretized fluid data from numerical simulations, we identify where in the neutron stars the debris came from, the paths it takes in order to escape from the neutron stars’ interiors, and the times and locations at which its orbital properties diverge from those of neighboring fluid elements that end up remaining in the merged neutron star.more » « less
-
Coyle, Laura E; Perrin, Marshall D; Matsuura, Shuji (Ed.)Free, publicly-accessible full text available August 23, 2025
-
Abstract Accreting supermassive binary black holes (SMBBHs) are potential multimessenger sources because they emit both gravitational-wave and electromagnetic (EM) radiation. Past work has shown that their EM output may be periodically modulated by an asymmetric density distribution in the circumbinary disk, often called an “overdensity” or “lump;” this modulation could possibly be used to identify a source as a binary. We explore the sensitivity of the overdensity to SMBBH mass ratio and magnetic flux through the accretion disk. We find that the relative amplitude of the overdensity and its associated EM periodic signal both degrade with diminishing mass ratio, vanishing altogether somewhere between 1:2 and 1:5. Greater magnetization also weakens the lump and any modulation of the light output. We develop a model to describe how lump formation results from internal stress degrading faster in the lump region than it can be rejuvenated through accretion inflow, and predicts a threshold value in specific internal stress below which lump formation should occur and which all our lump-forming simulations satisfy. Thus, detection of such a modulation would provide a constraint on both mass ratio and magnetic flux piercing the accretion flow.more » « less
-
Abstract We perform a full 3D general relativistic magnetohydrodynamical (GRMHD) simulation of an equal-mass, spinning, binary black hole approaching merger, surrounded by a circumbinary disk and with a minidisk around each black hole. For this purpose, we evolve the ideal GRMHD equations on top of an approximated spacetime for the binary that is valid in every position of space, including the black hole horizons, during the inspiral regime. We use relaxed initial data for the circumbinary disk from a previous long-term simulation, where the accretion is dominated by am= 1 overdensity called the lump. We compare our new spinning simulation with a previous non-spinning run, studying how spin influences the minidisk properties. We analyze the accretion from the inner edge of the lump to the black hole, focusing on the angular momentum budget of the fluid around the minidisks. We find that minidisks in the spinning case have more mass over a cycle than the non-spinning case. However, in both cases we find that most of the mass received by the black holes is delivered by the direct plunging of material from the lump. We also analyze the morphology and variability of the electromagnetic fluxes, and we find they share the same periodicities of the accretion rate. In the spinning case, we find that the outflows are stronger than the non-spinning case. Our results will be useful to understand and produce realistic synthetic light curves and spectra, which can be used in future observations.more » « less
-
Abstract We present fully relativistic predictions for the electromagnetic emission produced by accretion disks surrounding spinning and nonspinning supermassive binary black holes on the verge of merging. We use the codeBothrosto post-process data from 3D general relativistic magnetohydrodynamic simulations via ray-tracing calculations. These simulations model the dynamics of a circumbinary disk and the mini-disks that form around two equal-mass black holes orbiting each other at an initial separation of 20 gravitational radii, and evolve the system for more than 10 orbits in the inspiral regime. We model the emission as the sum of thermal blackbody radiation emitted by an optically thick accretion disk and a power-law spectrum extending to hard X-rays emitted by a hot optically thin corona. We generate time-dependent spectra, images, and light curves at various frequencies to investigate intrinsic periodic signals in the emission, as well as the effects of the black hole spin. We find that prograde black hole spin makes mini-disks brighter since the smaller innermost stable circular orbit angular momentum demands more dissipation before matter plunges to the horizon. However, compared to mini-disks in larger separation binaries with spinning black holes, our mini-disks are less luminous: unlike those systems, their mass accretion rate is lower than in the circumbinary disk, and they radiate with lower efficiency because their inflow times are shorter. Compared to a single black hole system matched in mass and accretion rate, these binaries have spectra noticeably weaker and softer in the UV. Finally, we discuss the implications of our findings for the potential observability of these systems.more » « less
-
Abstract We present a survey of how the spectral features of black hole X-ray binary systems depend on spin, accretion rate, viewing angle, and Fe abundance when predicted on the basis of first-principles physical calculations. The power-law component hardens with increasing spin. The thermal component strengthens with increasing accretion rate. The Compton bump is enhanced by higher accretion rate and lower spin. The Fe K α equivalent width grows sublinearly with Fe abundance. Strikingly, the K α profile is more sensitive to accretion rate than to spin because its radial surface brightness profile is relatively flat, and higher accretion rate extends the production region to smaller radii. The overall radiative efficiency is at least 30%–100% greater than as predicted by the Novikov–Thorne model.more » « less