Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract On 11 September 2021, two small thunderstorms developed over the Telescope Array Surface Detector (TASD) that produced an unprecedented number of six downward terrestrial gamma ray flashes (TGFs) within one‐hour timeframe. The TGFs occurred during the initial stage of negative cloud‐to‐ground flashes whose return strokes had increasingly large peak currents up to 223 kA, 147 GeV energy deposit in up to 25 1.2 km‐spaced surface detectors, and intermittent bursts of gamma‐rays with total durations up to 717 s. The analyses are based on observations recorded by the TASD network, complemented by data from a 3D lightning mapping array, broadband VHF interferometer, fast electric field change sensor, high‐speed video camera, and the National Lightning Detection Network. The TGFs of the final two flashes had gamma fluences of and 8, logarithmically bridging the gap between previous TASD and satellite‐based detections. The observations further emphasize the similarity between upward and downward TGF varieties, suggesting a common mechanism for their production.more » « lessFree, publicly-accessible full text available December 28, 2025
-
Abstract Optical emissions associated with Terrestrial Gamma ray Flashes (TGFs) have recently become important subjects in space‐based and ground‐based observations as they can help us understand how TGFs are produced during thunderstorms. In this paper, we present the first time‐resolved leader spectra of the optical component associated with a downward TGF. The TGF was observed by the Telescope Array Surface Detector (TASD) simultaneously with other lightning detectors, including a Lightning Mapping Array (LMA), an INTerFerometer (INTF), a Fast Antenna (FA), and a spectroscopic system. The spectroscopic system recorded leader spectra at 29,900 frames per second (33.44 s time resolution), covering a spectral range from 400 to 900 nm, with 2.1 nm per pixel. The recordings of the leader spectra began 11.7 ms before the kA return stroke and at a height of 2.37 km above the ground. These spectra reveal that optical emissions of singly ionized nitrogen and oxygen occur between 167 s before and 267 s after the TGF detection, while optical emissions of neutrals (H I, 656 nm; N I, 744 nm, and O I, 777 nm) occur right at the moment of the detection. The time‐dependent spectra reveal differences in the optical emissions of lightning leaders with and without downward TGFs.more » « lessFree, publicly-accessible full text available December 28, 2025
-
Smith, KT (Ed.)Cosmic rays are energetic charged particles from extraterrestrial sources, with the highest-energy events thought to come from extragalactic sources. Their arrival is infrequent, so detection requires instruments with large collecting areas. In this work, we report the detection of an extremely energetic particle recorded by the surface detector array of the Telescope Array experiment. We calculate the particle’s energy as (~40 joules). Its arrival direction points back to a void in the large-scale structure of the Universe. Possible explanations include a large deflection by the foreground magnetic field, an unidentified source in the local extragalactic neighborhood, or an incomplete knowledge of particle physics.more » « less
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
Abstract Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometre-scale space. These complex systems manifest a variety of shapes1–3, traditionally explored using non-invasive spectroscopic techniques at low energies4,5. However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the collective-flow-assisted nuclear shape-imaging method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analysing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors6,7. We benchmark this method in collisions of ground-state uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales.more » « lessFree, publicly-accessible full text available November 7, 2025