Integrated optical phased arrays (OPAs) have emerged as a promising technology for various applications due to their ability to dynamically control free-space optical beams in a compact and non-mechanical manner. While integrated OPAs have traditionally focused on the infrared spectrum, advancements in visible-light integrated OPAs have been relatively limited despite their potential benefits for applications such as displays, 3D printing, trapped-ion quantum systems, underwater communications, and optogenetics. Moreover, integrated visible-light grating-based optical antennas, one of the crucial devices that forms a visible-light integrated OPA, have been relatively underexplored, especially for more advanced designs. In this paper, we address this gap by providing a thorough explanation of the design principles for integrated visible-light grating-based antennas and applying them to design and experimentally demonstrate five different antennas with varying advanced capabilities, including the first visible-light unidirectionally-emitting grating-based antennas for integrated OPAs. Specifically, we develop and experimentally demonstrate integrated visible-light exponentially-emitting single-layer, uniformly-emitting single-layer, exponentially-emitting dual-layer, uniformly-emitting dual-layer, and unidirectionally-emitting dual-layer grating-based antennas. This work aims to provide a thorough design guide for integrated visible-light grating-based antennas, facilitating future widespread use of integrated OPAs for new and emerging visible-light applications.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Visible-light uniform and unidirectional grating-based antennas for integrated optical phased arrays
-
Integrated optical phased arrays (OPAs) have enabled cutting-edge applications where optical beam steering can benefit from chip-scale integration. However, the majority of integrated OPA demonstrations to date have been limited to showing far-field beam forming and steering. There are, however, many emerging applications of integrated photonics where emission of focused light from a chip is desirable, such as in integrated optical tweezers for biophotonics, chip-based 3D printers, and trapped-ion quantum systems. To address this need, we have recently demonstrated the first near-field-focusing integrated OPAs; however, this preliminary demonstration was limited to emission at only one focal plane above the chip. In this paper, we show the first, to the best of our knowledge, spiral integrated OPAs, enabling emission of focusing beams with tunable variable focal heights for the first time. In the process, we develop the theory, explore the design parameters, and propose feed-structure architectures for such OPAs. Finally, we experimentally demonstrate an example spiral integrated OPA system fabricated in a standard silicon-photonics process, showing wavelength-tunable variable-focal-height focusing emission. This work introduces a first-of-its-kind integrated OPA architecture not previously explored or demonstrated in literature and, as such, enables new functionality for emerging applications of OPAs that require focusing operation.
-
Solid-state light-detection-and-ranging (LiDAR) sensors based on integrated optical phased arrays (OPAs) have shown significant promise to reduce the cost, size, weight, and power consumption associated with LiDAR for autonomous systems. However, these OPA-based LiDAR systems typically operate by rastering a single beam, generating point clouds that constitute a significant amount of data and computational burden in the process. In this paper, we develop and experimentally demonstrate a novel multi-beam solid-state OPA-based LiDAR system capable of detecting and ranging multiple targets simultaneously, passively, and without rastering. Specifically, we develop the devices, subsystems, and system architectures to realize a solid-state frequency-modulated-continuous-wave (FMCW) LiDAR system that leverages a discrete-Fourier-transform star-coupler-based OPA as a receiver and a multi-beam splitter-tree-based OPA as a transmitter. Using this multi-beam LiDAR system, we demonstrate the simultaneous detection and ranging of two targets at two different cross-range positions without rastering. Through this work, we demonstrate a new spatially-adaptive sensing modality for solid-state LiDAR that enables improved spatial awareness and promises to reduce the data deluge associated with LiDAR in autonomous systems.
-
Abstract Imagine if it were possible to create 3D objects in the palm of your hand within seconds using only a single photonic chip. Although 3D printing has revolutionized the way we create in nearly every aspect of modern society, current 3D printers rely on large and complex mechanical systems to enable layer-by-layer addition of material. This limits print speed, resolution, portability, form factor, and material complexity. Although there have been recent efforts in developing novel photocuring-based 3D printers that utilize light to transform matter from liquid resins to solid objects using advanced methods, they remain reliant on bulky and complex mechanical systems. To address these limitations, we combine the fields of silicon photonics and photochemistry to propose the first chip-based 3D printer. The proposed system consists of only a single millimeter-scale photonic chip without any moving parts that emits reconfigurable visible-light holograms up into a simple stationary resin well to enable non-mechanical 3D printing. Furthermore, we experimentally demonstrate a stereolithography-inspired proof-of-concept version of the chip-based 3D printer using a visible-light beam-steering integrated optical phased array and visible-light-curable resin, showing 3D printing using a chip-based system for the first time. This work demonstrates the first steps towards a highly-compact, portable, and low-cost solution for the next generation of 3D printers.
-
Abstract The field of integrated photonics has advanced rapidly due to wafer-scale fabrication, with integrated-photonics platforms and fabrication processes being demonstrated at both infrared and visible wavelengths. However, these demonstrations have primarily focused on fabrication processes on silicon substrates that result in rigid photonic wafers and chips, which limit the potential application spaces. There are many application areas that would benefit from mechanically-flexible integrated-photonics wafers, such as wearable healthcare monitors and pliable displays. Although there have been demonstrations of mechanically-flexible photonics fabrication, they have been limited to fabrication processes on the individual device or chip scale, which limits scalability. In this paper, we propose, develop, and experimentally characterize the first 300-mm wafer-scale platform and fabrication process that results in mechanically-flexible photonic wafers and chips. First, we develop and describe the 300-mm wafer-scale CMOS-compatible flexible platform and fabrication process. Next, we experimentally demonstrate key optical functionality at visible wavelengths, including chip coupling, waveguide routing, and passive devices. Then, we perform a bend-durability study to characterize the mechanical flexibility of the photonic chips, demonstrating bending a single chip 2000 times down to a bend diameter of 0.5 inch with no degradation in the optical performance. Finally, we experimentally characterize polarization-rotation effects induced by bending the flexible photonic chips. This work will enable the field of integrated photonics to advance into new application areas that require flexible photonic chips.
-
In this Letter, we propose and experimentally demonstrate the first, to our knowledge, integrated liquid-crystal-based (LC-based) variable-tap devices for visible-light amplitude modulation. These devices leverage the birefringence of LC medium to actively tune the coupling coefficient between two waveguides. First, we develop the device structure, theory of operation, and design procedure. Next, we summarize the fabrication and LC packaging procedure for these devices. Finally, we experimentally demonstrate amplitude modulation with 15.4-dB tap-port extinction within ±3.1 V for a 14-µm-long device at a 637-nm operating wavelength. These small-form-factor variable-tap devices provide a compact and low-power solution to integrated visible-light amplitude modulation and will enable future high-density integrated visible-light systems.
-
In this work, we design and experimentally demonstrate the first, to the best of our knowledge, integrated polarization splitters and rotators at blue wavelengths. We develop compact and efficient designs for both a polarization splitter and rotator at a 422-nm wavelength, an important laser-cooling transition for88Sr+ions. These devices are fabricated in a 200-mm wafer-scale process and experimentally demonstrated, resulting in a measured polarization-splitter transverse-electric thru-port coupling of 98.0% and transverse-magnetic tap-port coupling of 77.6% for a compact 16-µm-long device and a polarization-rotator conversion efficiency of 92.2% for a separate compact 111-µm-long device. This work paves the way for more sophisticated integrated control of trapped-ion and neutral-atom quantum systems.
-
In this Letter, we present the first, to the best of our knowledge, liquid-crystal-based integrated optical phased arrays (OPAs) that enable visible-light beam forming and steering. A cascaded OPA architecture is developed and experimentally shown to emit a beam in the far field at a 632.8-nm wavelength with a power full width at half maximum of 0.4°×1.6° and 7.2° beam-steering range within ±3.4 V. Furthermore, we show the first visible-light integrated-OPA-based free-space-optical-communications transmitter and use it to demonstrate the first integrated-OPA-based underwater-wireless-optical-communications link. We experimentally demonstrate a 1-Gbps on–off-keying link through water and an electronically-switchable point-to-multipoint link with channel selectivity greater than 19 dB through a water-filled tank.