skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nusbaumer, Jesse"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Modeling experiments and field campaigns have evaluated shallow convective mixing as a potential constraint on the low‐cloud climate feedback, which is critical for establishing climate sensitivity. Yet the apparent relationship between low‐cloud fraction and shallow convective mixing differs substantially among general circulation models (GCMs), large eddy simulations, and both remote sensing and in situ observations. Here, we consider how changes in GCMs' representations of subgrid‐scale vertical moist fluxes can alter the cloud‐mixing relationship. Using vertical profiles of water vapor isotope ratios (δD) to characterize the strength of shallow convective mixing in a manner that can be compared directly to satellite observations, we evaluate the cloud‐mixing relationship produced in tiered experiments with the Community Atmosphere Model (CAM). From versions 5 to 6 of CAM, the most notable physics change is CLUBB, a scheme that unifies the representation of shallow convection and boundary layer turbulence through a joint probability density function (PDF) for subgrid velocity and moisture. CLUBB reduces the covariance between low‐cloud fraction and shallow convective mixing, producing a bivariate distribution that is more similar in character to monthly averaged satellite observations. Using parameter sensitivity experiments, we argue that CLUBB's ability to simulate skewness in the distribution of vertical velocity produces more isolated but stronger moist updrafts, which reduce the grid‐mean low‐cloud fraction while maintaining efficient hydrological connectivity between the boundary layer and the free troposphere. These results suggest that mixing is not an effective predictor of low‐cloud feedback in GCMs with PDF closure schemes. 
    more » « less
    Free, publicly-accessible full text available July 16, 2026
  2. Abstract Describing the processes that regulate the flows and exchanges of water within the atmosphere and between the atmosphere and Earth’s surface is critical for understanding environmental change and predicting Earth’s future accurately. The heavy-to-light hydrogen and oxygen isotope ratios of water provide a useful lens through which to evaluate these processes due to their innate sensitivity to evaporation, condensation, and mixing. In this review, we examine how isotopic information advances our understanding about the origin and transport history of moisture in the atmosphere and about convective processes—including cloud mixing and detrainment, precipitation formation, and rain evaporation. Moreover, we discuss how isotopic data can be used to benchmark numerical simulations across a range of scales and improve predictive skill through data assimilation techniques. This synthesis of work illustrates that, when paired with air mass thermodynamic properties that are commonly measured and modeled (such as specific humidity and temperature), water’s isotope ratios help shed light on moist processes that help set the climate state. 
    more » « less
  3. Abstract The hydrologic cycle is a fundamental component of the climate system with critical societal and ecological relevance. Yet gaps persist in our understanding of water fluxes and their response to increased greenhouse gas forcing. The stable isotope ratios of oxygen and hydrogen in water provide a unique opportunity to evaluate hydrological processes and investigate their role in the variability of the climate system and its sensitivity to change. Water isotopes also form the basis of many paleoclimate proxies in a variety of archives, including ice cores, lake and marine sediments, corals, and speleothems. These records hold most of the available information about past hydrologic variability prior to instrumental observations. Water isotopes thus provide a ‘common currency’ that links paleoclimate archives to modern observations, allowing us to evaluate hydrologic processes and their effects on climate variability on a wide range of time and length scales. Building on previous literature summarizing advancements in water isotopic measurements and modeling and describe water isotopic applications for understanding hydrological processes, this topical review reflects on new insights about climate variability from isotopic studies. We highlight new work and opportunities to enhance our understanding and predictive skill and offer a set of recommendations to advance observational and model-based tools for climate research. Finally, we highlight opportunities to better constrain climate sensitivity and identify anthropogenically-driven hydrologic changes within the inherently noisy background of natural climate variability. 
    more » « less
  4. {"Abstract":["This dataset contains monthly average output files from the iCAM6\n simulations used in the manuscript "Enhancing understanding of the\n hydrological cycle via pairing of process-oriented and isotope ratio\n tracers," in review at the Journal of Advances in Modeling Earth\n Systems. A file corresponding to each of the tagged and isotopic variables\n used in this manuscript is included. Files are at 0.9° latitude x 1.25°\n longitude, and are in NetCDF format. Data from two simulations are\n included: 1) a simulation where the atmospheric model was\n "nudged" to ERA5 wind and surface pressure fields, by adding an\n additional tendency (see section 3.1 of associated manuscript), and 2) a\n simulation where the atmospheric state was allowed to freely evolve, using\n only boundary conditions imposed at the surface and top of atmosphere.\n Specific information about each of the variables provided is located in\n the "usage notes" section below. Associated article abstract:\n The hydrologic cycle couples the Earth's energy and carbon budgets\n through evaporation, moisture transport, and precipitation. Despite a\n wealth of observations and models, fundamental limitations remain in our\n capacity to deduce even the most basic properties of the hydrological\n cycle, including the spatial pattern of the residence time (RT) of water\n in the atmosphere and the mean distance traveled from evaporation sources\n to precipitation sinks. Meanwhile, geochemical tracers such as stable\n water isotope ratios provide a tool to probe hydrological processes, yet\n their interpretation remains equivocal despite several decades of use. As\n a result, there is a need for new mechanistic tools that link variations\n in water isotope ratios to underlying hydrological processes. Here we\n present a new suite of \u201cprocess-oriented tags,\u201d which we use to explicitly\n trace hydrological processes within the isotopically enabled Community\n Atmosphere Model, version 6 (iCAM6). Using these tags, we test the\n hypotheses that precipitation isotope ratios respond to parcel rainout,\n variations in atmospheric RT, and preserve information regarding\n meteorological conditions during evaporation. We present results for a\n historical simulation from 1980 to 2004, forced with winds from the ERA5\n reanalysis. We find strong evidence that precipitation isotope ratios\n record information about atmospheric rainout and meteorological conditions\n during evaporation, but little evidence that precipitation isotope ratios\n vary with water vapor RT. These new tracer methods will enable more robust\n linkages between observations of isotope ratios in the modern hydrologic\n cycle or proxies of past terrestrial environments and the environmental\n processes underlying these observations.  "],"Methods":["Details about the simulation setup can be found in section 3 of the\n associated open-source manuscript, "Enhancing understanding of the\n hydrological cycle via pairing of process\u2010oriented and isotope ratio\n tracers." In brief, we conducted two simulations of the atmosphere\n from 1980-2004 using the isotope-enabled version of the Community\n Atmosphere Model 6 (iCAM6) at 0.9x1.25° horizontal resolution, and with 30\n vertical hybrid layers spanning from the surface to ~3 hPa. In the first\n simulation, wind and surface pressure fields were "nudged"\n toward the ERA5 reanalysis dataset by adding a nudging tendency,\n preventing the model from diverging from observed/reanalysis wind fields.\n In the second simulation, no additional nudging tendency was included, and\n the model was allowed to evolve 'freely' with only boundary\n conditions provided at the top (e.g., incoming solar radiation) and bottom\n (e.g., observed sea surface temperatures) of the model. In addition to the\n isotopic variables, our simulation included a suite of\n 'process-oriented tracers,' which we describe in section 2 of\n the manuscript. These variables are meant to track a property of water\n associated with evaporation, condensation, or atmospheric transport."],"Other":["Metadata are provided about each of the files below; moreover, since the\n attached files are NetCDF data - this information is also provided with\n the data files. NetCDF metadata can be accessed using standard tools\n (e.g., ncdump). Each file has 4 variables: the tagged quantity, and the\n associated coordinate variables (time, latitude, longitude). The latter\n three are identical across all files, only the tagged quantity changes.\n Twelve files are provided for the nudged simulation, and an additional\n three are provided for the free simulations: Nudged simulation files\n iCAM6_nudged_1980-2004_mon_RHevap: Mass-weighted mean evaporation source\n property: RH (%) with respect to surface temperature.\n iCAM6_nudged_1980-2004_mon_Tevap: Mass-weighted mean evaporation source\n property: surface temperature in Kelvin\n iCAM6_nudged_1980-2004_mon_Tcond: Mass-weighted mean condensation\n property: temperature (K) iCAM6_nudged_1980-2004_mon_columnQ: Total\n (vertically integrated) precipitable water (kg/m2).  Not a tagged\n quantity, but necessary to calculate depletion times in section 4.3 (e.g.,\n Fig. 11 and 12). iCAM6_nudged_1980-2004_mon_d18O: Precipitation d18O (\u2030\n VSMOW) iCAM6_nudged_1980-2004_mon_d18Oevap_0: Mass-weighted mean\n evaporation source property - d18O of the evaporative flux (e.g., the\n 'initial' isotope ratio prior to condensation), (\u2030 VSMOW)\n iCAM6_nudged_1980-2004_mon_dxs: Precipitation deuterium excess (\u2030 VSMOW) -\n note that precipitation d2H can be calculated from this file and the\n precipitation d18O as d2H = d-excess - 8*d18O.\n iCAM6_nudged_1980-2004_mon_dexevap_0: Mass-weighted mean evaporation\n source property - deuterium excess of the evaporative flux\n iCAM6_nudged_1980-2004_mon_lnf: Integrated property - ln(f) calculated\n from the constant-fractionation d18O tracer (see section 3.2).\n iCAM6_nudged_1980-2004_mon_precip: Total precipitation rate in m/s. Note\n there is an error in the metadata in this file - it is total\n precipitation, not just convective precipitation.\n iCAM6_nudged_1980-2004_mon_residencetime: Mean atmospheric water residence\n time (in days). iCAM6_nudged_1980-2004_mon_transportdistance: Mean\n atmospheric water transport distance (in km). Free simulation files\n iCAM6_free_1980-2004_mon_d18O: Precipitation d18O (\u2030 VSMOW)\n iCAM6_free_1980-2004_mon_dxs: Precipitation deuterium excess (\u2030 VSMOW) -\n note that precipitation d2H can be calculated from this file and the\n precipitation d18O as d2H = d-excess - 8*d18O.\n iCAM6_free_1980-2004_mon_precip: Total precipitation rate in m/s. Note\n there is an error in the metadata in this file - it is total\n precipitation, not just convective precipitation."]} 
    more » « less
  5. Abstract The hydrologic cycle couples the Earth's energy and carbon budgets through evaporation, moisture transport, and precipitation. Despite a wealth of observations and models, fundamental limitations remain in our capacity to deduce even the most basic properties of the hydrological cycle, including the spatial pattern of the residence time (RT) of water in the atmosphere and the mean distance traveled from evaporation sources to precipitation sinks. Meanwhile, geochemical tracers such as stable water isotope ratios provide a tool to probe hydrological processes, yet their interpretation remains equivocal despite several decades of use. As a result, there is a need for new mechanistic tools that link variations in water isotope ratios to underlying hydrological processes. Here we present a new suite of “process‐oriented tags,” which we use to explicitly trace hydrological processes within the isotopically enabled Community Atmosphere Model, version 6 (iCAM6). Using these tags, we test the hypotheses that precipitation isotope ratios respond to parcel rainout, variations in atmospheric RT, and preserve information regarding meteorological conditions during evaporation. We present results for a historical simulation from 1980 to 2004, forced with winds from the ERA5 reanalysis. We find strong evidence that precipitation isotope ratios record information about atmospheric rainout and meteorological conditions during evaporation, but little evidence that precipitation isotope ratios vary with water vapor RT. These new tracer methods will enable more robust linkages between observations of isotope ratios in the modern hydrologic cycle or proxies of past terrestrial environments and the environmental processes underlying these observations. 
    more » « less
  6. Abstract Floods and droughts in the Mississippi River basin are perennial hazards that cause severe economic disruption. Here we develop and analyze a new lipid biomarker record from Horseshoe Lake (Illinois, USA) to evaluate the climatic conditions associated with hydroclimatic extremes that occurred in this region over the last 1,800 years. We present geochemical proxy evidence of temperature and moisture variability using branched glycerol dialkyl glycerol tetraethers (brGDGTs) and plant leaf wax hydrogen isotopic composition (δ2Hwax) and use isotope‐enabled coupled model simulations to diagnose the controls on these proxies. Our data show pronounced warming during the Medieval era (CE 1000–1,600) that corresponds to midcontinental megadroughts. Severe floods on the upper Mississippi River basin also occurred during the Medieval era and correspond to periods of enhanced warm‐season moisture. Our findings imply that projected increases in temperature and warm‐season precipitation could enhance both drought and flood hazards in this economically vital region. 
    more » « less