skip to main content


Title: Water isotopes, climate variability, and the hydrological cycle: recent advances and new frontiers
Abstract

The hydrologic cycle is a fundamental component of the climate system with critical societal and ecological relevance. Yet gaps persist in our understanding of water fluxes and their response to increased greenhouse gas forcing. The stable isotope ratios of oxygen and hydrogen in water provide a unique opportunity to evaluate hydrological processes and investigate their role in the variability of the climate system and its sensitivity to change. Water isotopes also form the basis of many paleoclimate proxies in a variety of archives, including ice cores, lake and marine sediments, corals, and speleothems. These records hold most of the available information about past hydrologic variability prior to instrumental observations. Water isotopes thus provide a ‘common currency’ that links paleoclimate archives to modern observations, allowing us to evaluate hydrologic processes and their effects on climate variability on a wide range of time and length scales. Building on previous literature summarizing advancements in water isotopic measurements and modeling and describe water isotopic applications for understanding hydrological processes, this topical review reflects on new insights about climate variability from isotopic studies. We highlight new work and opportunities to enhance our understanding and predictive skill and offer a set of recommendations to advance observational and model-based tools for climate research. Finally, we highlight opportunities to better constrain climate sensitivity and identify anthropogenically-driven hydrologic changes within the inherently noisy background of natural climate variability.

 
more » « less
Award ID(s):
1847791 1805143
NSF-PAR ID:
10413898
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research: Climate
Volume:
2
Issue:
2
ISSN:
2752-5295
Page Range / eLocation ID:
Article No. 022002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Water isotopes are tracers of convective processes and are often used as proxies for past precipitation. These applications require a better understanding of the impact of convective processes on the isotopic composition of water vapor and precipitation. One way to advance this understanding is to analyze the isotopic mesoscale variations during organized convective systems such as tropical cyclones or squall lines. The goal of this study is to understand these isotopic mesoscale variations with particular attention to isotopic signals in near‐surface vapor and precipitation that may be present in observations and in paleoclimate proxies. With this aim, we run cloud resolving model simulations in radiative‐convective equilibrium in which rotation or wind shear is added, allowing us to simulate tropical cyclones or squall lines. The simulations capture the robust aspects of mesoscale isotopic variations in observed tropical cyclones and squall lines. We interpret these variations using a simple water budget model for the sub‐cloud layer of different parts of the domain. We find that rain evaporation and rain‐vapor diffusive exchanges are the main drivers of isotopic depletion within tropical cyclones and squall lines. Horizontal advection spreads isotopic anomalies, thus reshaping the mesoscale isotopic pattern. This study contributes to our understanding of mesoscale isotopic variability and provides physical arguments supporting the interpretation of paleoclimate isotopic archives in tropical regions in terms of past cyclonic activity.

     
    more » « less
  2. Abstract

    Because of the pervasive role of water in the Earth system, the relative abundances of stable isotopologues of water are valuable for understanding atmospheric, oceanic, and biospheric processes, and for interpreting paleoclimate proxy reconstructions. Isotopologues are transported by both large‐scale and turbulent flows, and the ratio of heavy to light isotopologues changes due to fractionation that can accompany condensation and evaporation processes. Correctly predicting the isotopic distributions requires resolving the relationships between large‐scale ocean and atmospheric circulation and smaller‐scale hydrological processes, which can be accomplished within a coupled climate modeling framework. Here we present the water isotope‐enabled version of the Community Earth System Model version 1 (iCESM1), which simulates global variations in water isotopic ratios in the atmosphere, land, ocean, and sea ice. In a transient Last Millennium simulation covering the 850–2005 period, iCESM1 correctly captures the late‐twentieth‐century structure of δ18O and δD over the global oceans, with more limited accuracy over land. The relationship between salinity and seawater δ18O is also well represented over the observational period, including interbasin variations. We illustrate the utility of coupled, isotope‐enabled simulations using both Last Millennium simulations and freshwater hosing experiments with iCESM1. Closing the isotopic mass balance between all components of the coupled model provides new confidence in the underlying depiction of the water cycle in CESM, while also highlighting areas where the underlying hydrologic balance can be improved. The iCESM1 is poised to be a vital community resource for ongoing model development with both modern and paleoclimate applications.

     
    more » « less
  3. Abstract

    Measurements of oxygen and hydrogen stable isotopes in precipitation (δ18OPand δ2HP) provide a valuable tool for understanding modern hydrological processes and the empirical foundation for interpreting paleoisotope archives. However, long‐term data sets of modern δ18OPand δ2HPin southern Alaska are entirely absent, thus limiting our insight and application of regionally defined climate‐isotope relationships in this proxy‐rich region. We present and utilize a 13‐year‐long record of event‐based δ18OPand δ2HPdata from Anchorage, Alaska (2005–2018,n = 332), to determine the mechanisms controlling precipitation isotopes. Local surface air temperature explains ~30% of variability in the δ18OPdata with a temperature‐δ18O slope of 0.31 ‰/°C, indicating that δ18OParchives may not be suitable paleo‐thermometers in this region. Instead, back‐trajectory modeling reveals how winter δ18OP2HPreflects synoptic and mesoscale processes in atmospheric circulation that drive changes in the passage of air masses with different moisture sources, transport, and rainout histories. Specifically, meridional systems—with either northerly flow from the Arctic or southerly flow from the Gulf of Alaska—have relatively low δ18OP2HPdue to progressive cooling and removal of precipitation as it condenses with altitude over Alaska's southern mountain ranges. To the contrary, zonally derived moisture from either the North Pacific and/or Bering Sea retains relatively high δ18OP2HPvalues. These new data contribute a better understanding of the modern Alaska water isotope cycle and provide an empirical basis for interpreting paleoisotope archives in context of regional atmospheric circulation.

     
    more » « less
  4. This dataset contains monthly average output files from the iCAM6 simulations used in the manuscript "Enhancing understanding of the hydrological cycle via pairing of process-oriented and isotope ratio tracers," in review at the Journal of Advances in Modeling Earth Systems. A file corresponding to each of the tagged and isotopic variables used in this manuscript is included. Files are at 0.9° latitude x 1.25° longitude, and are in NetCDF format. Data from two simulations are included: 1) a simulation where the atmospheric model was "nudged" to ERA5 wind and surface pressure fields, by adding an additional tendency (see section 3.1 of associated manuscript), and 2) a simulation where the atmospheric state was allowed to freely evolve, using only boundary conditions imposed at the surface and top of atmosphere. Specific information about each of the variables provided is located in the "usage notes" section below. Associated article abstract: The hydrologic cycle couples the Earth's energy and carbon budgets through evaporation, moisture transport, and precipitation. Despite a wealth of observations and models, fundamental limitations remain in our capacity to deduce even the most basic properties of the hydrological cycle, including the spatial pattern of the residence time (RT) of water in the atmosphere and the mean distance traveled from evaporation sources to precipitation sinks. Meanwhile, geochemical tracers such as stable water isotope ratios provide a tool to probe hydrological processes, yet their interpretation remains equivocal despite several decades of use. As a result, there is a need for new mechanistic tools that link variations in water isotope ratios to underlying hydrological processes. Here we present a new suite of “process-oriented tags,” which we use to explicitly trace hydrological processes within the isotopically enabled Community Atmosphere Model, version 6 (iCAM6). Using these tags, we test the hypotheses that precipitation isotope ratios respond to parcel rainout, variations in atmospheric RT, and preserve information regarding meteorological conditions during evaporation. We present results for a historical simulation from 1980 to 2004, forced with winds from the ERA5 reanalysis. We find strong evidence that precipitation isotope ratios record information about atmospheric rainout and meteorological conditions during evaporation, but little evidence that precipitation isotope ratios vary with water vapor RT. These new tracer methods will enable more robust linkages between observations of isotope ratios in the modern hydrologic cycle or proxies of past terrestrial environments and the environmental processes underlying these observations.   Details about the simulation setup can be found in section 3 of the associated open-source manuscript, "Enhancing understanding of the hydrological cycle via pairing of process‐oriented and isotope ratio tracers." In brief, we conducted two simulations of the atmosphere from 1980-2004 using the isotope-enabled version of the Community Atmosphere Model 6 (iCAM6) at 0.9x1.25° horizontal resolution, and with 30 vertical hybrid layers spanning from the surface to ~3 hPa. In the first simulation, wind and surface pressure fields were "nudged" toward the ERA5 reanalysis dataset by adding a nudging tendency, preventing the model from diverging from observed/reanalysis wind fields. In the second simulation, no additional nudging tendency was included, and the model was allowed to evolve 'freely' with only boundary conditions provided at the top (e.g., incoming solar radiation) and bottom (e.g., observed sea surface temperatures) of the model. In addition to the isotopic variables, our simulation included a suite of 'process-oriented tracers,' which we describe in section 2 of the manuscript. These variables are meant to track a property of water associated with evaporation, condensation, or atmospheric transport. Metadata are provided about each of the files below; moreover, since the attached files are NetCDF data - this information is also provided with the data files. NetCDF metadata can be accessed using standard tools (e.g., ncdump). Each file has 4 variables: the tagged quantity, and the associated coordinate variables (time, latitude, longitude). The latter three are identical across all files, only the tagged quantity changes. Twelve files are provided for the nudged simulation, and an additional three are provided for the free simulations: Nudged simulation files iCAM6_nudged_1980-2004_mon_RHevap: Mass-weighted mean evaporation source property: RH (%) with respect to surface temperature. iCAM6_nudged_1980-2004_mon_Tevap: Mass-weighted mean evaporation source property: surface temperature in Kelvin iCAM6_nudged_1980-2004_mon_Tcond: Mass-weighted mean condensation property: temperature (K) iCAM6_nudged_1980-2004_mon_columnQ: Total (vertically integrated) precipitable water (kg/m2).  Not a tagged quantity, but necessary to calculate depletion times in section 4.3 (e.g., Fig. 11 and 12). iCAM6_nudged_1980-2004_mon_d18O: Precipitation d18O (‰ VSMOW) iCAM6_nudged_1980-2004_mon_d18Oevap_0: Mass-weighted mean evaporation source property - d18O of the evaporative flux (e.g., the 'initial' isotope ratio prior to condensation), (‰ VSMOW) iCAM6_nudged_1980-2004_mon_dxs: Precipitation deuterium excess (‰ VSMOW) - note that precipitation d2H can be calculated from this file and the precipitation d18O as d2H = d-excess - 8*d18O. iCAM6_nudged_1980-2004_mon_dexevap_0: Mass-weighted mean evaporation source property - deuterium excess of the evaporative flux iCAM6_nudged_1980-2004_mon_lnf: Integrated property - ln(f) calculated from the constant-fractionation d18O tracer (see section 3.2). iCAM6_nudged_1980-2004_mon_precip: Total precipitation rate in m/s. Note there is an error in the metadata in this file - it is total precipitation, not just convective precipitation. iCAM6_nudged_1980-2004_mon_residencetime: Mean atmospheric water residence time (in days). iCAM6_nudged_1980-2004_mon_transportdistance: Mean atmospheric water transport distance (in km). Free simulation files iCAM6_free_1980-2004_mon_d18O: Precipitation d18O (‰ VSMOW) iCAM6_free_1980-2004_mon_dxs: Precipitation deuterium excess (‰ VSMOW) - note that precipitation d2H can be calculated from this file and the precipitation d18O as d2H = d-excess - 8*d18O. iCAM6_free_1980-2004_mon_precip: Total precipitation rate in m/s. Note there is an error in the metadata in this file - it is total precipitation, not just convective precipitation. 
    more » « less
  5. Abstract

    Explosive volcanic eruptions are one of the largest natural climate perturbations, but few observational constraints exist on either the climate responses to eruptions or the properties (size, hemispheric aerosol distribution, etc.) of the eruptions themselves. Paleoclimate records are thus important sources of information on past eruptions, often through the measurement of oxygen isotopic ratios (δ18O) in natural archives. However, since many processes affectδ18O, the dynamical interpretation of these records can be quite complex. Here we present results from new, isotope‐enabled members of the Community Earth System Model Last Millennium Ensemble, documenting eruption‐inducedδ18O variations throughout the climate system. Eruptions create significant perturbations in theδ18O of precipitation and soil moisture in central/eastern North America, via excitation of the Atlantic Multidecadal Oscillation. Monsoon Asia and Australia also exhibit strong precipitation and soilδ18O anomalies; in these cases,δ18O may reflect changes to El Niño‐Southern Oscillation phase following eruptions. Salinity and seawaterδ18O patterns demonstrate the importance of both local hydrologic shifts and the phasing of the El Niño‐Southern Oscillation response, both along the equator and in the subtropics. In all cases, the responses are highly sensitive to eruption latitude, which points to the utility of isotopic records in constraining aerosol distribution patterns associated with past eruptions. This is most effective using precipitationδ18O; all Southern eruptions and the majority (66%) of Northern eruptions can be correctly identified. This work thus serves as a starting point for new, quantitative uses of isotopic records for understanding volcanic impacts on climate.

     
    more » « less