The South American summer monsoon (SASM) generates important hydroclimatic impacts in (sub‐)tropical South America and isotopic tracers recorded in paleoclimatic archives allow for assessing its long‐term response to Pacific variability prior to modern observations. Stable oxygen isotopes in precipitation integrate hydroclimatic changes during the SASM mature phase from December to February (DJF) in response to the Interdecadal Pacific Oscillation (IPO) and El Niño—Southern Oscillation (ENSO), respectively. Here, results from the isotope‐enabled Community Atmosphere Model v.5 are compared with highly resolved and precisely dated isotopic records from speleothems, tree rings, lake and ice cores during the industrial era (1880–2000 CE) and validated against observations from the International Atomic Energy Agency (IAEA) network. Pacific sea surface temperatures (SSTs) are coupled to the isotopic composition of SASM precipitation through perturbations in the Walker circulation associated with low‐ (IPO) and high‐frequency (ENSO) variability, impacting convective activity over tropical South America and the tropical Atlantic. Changes in convection over this monsoon entrance region ultimately control the downstream oxygen isotopic composition of precipitation recorded in paleoclimate archives. Overall, model results, paleoclimate records and IAEA data agree on the isotopic response to Pacific SST forcing. These results highlight the potential for long isotopic paleoclimate records to reconstruct Pacific climate variability on both high‐ and low‐frequency timescales. Furthermore, the isolation of the IPO signal in a diverse set of isotopic archives invites the reinterpretation of other paleoclimate proxies for identifying this historically overlooked forcing.
The hydrologic cycle is a fundamental component of the climate system with critical societal and ecological relevance. Yet gaps persist in our understanding of water fluxes and their response to increased greenhouse gas forcing. The stable isotope ratios of oxygen and hydrogen in water provide a unique opportunity to evaluate hydrological processes and investigate their role in the variability of the climate system and its sensitivity to change. Water isotopes also form the basis of many paleoclimate proxies in a variety of archives, including ice cores, lake and marine sediments, corals, and speleothems. These records hold most of the available information about past hydrologic variability prior to instrumental observations. Water isotopes thus provide a ‘common currency’ that links paleoclimate archives to modern observations, allowing us to evaluate hydrologic processes and their effects on climate variability on a wide range of time and length scales. Building on previous literature summarizing advancements in water isotopic measurements and modeling and describe water isotopic applications for understanding hydrological processes, this topical review reflects on new insights about climate variability from isotopic studies. We highlight new work and opportunities to enhance our understanding and predictive skill and offer a set of recommendations to advance observational and model-based tools for climate research. Finally, we highlight opportunities to better constrain climate sensitivity and identify anthropogenically-driven hydrologic changes within the inherently noisy background of natural climate variability.
more » « less- PAR ID:
- 10413898
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research: Climate
- Volume:
- 2
- Issue:
- 2
- ISSN:
- 2752-5295
- Page Range / eLocation ID:
- Article No. 022002
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Water isotopes are tracers of convective processes and are often used as proxies for past precipitation. These applications require a better understanding of the impact of convective processes on the isotopic composition of water vapor and precipitation. One way to advance this understanding is to analyze the isotopic mesoscale variations during organized convective systems such as tropical cyclones or squall lines. The goal of this study is to understand these isotopic mesoscale variations with particular attention to isotopic signals in near‐surface vapor and precipitation that may be present in observations and in paleoclimate proxies. With this aim, we run cloud resolving model simulations in radiative‐convective equilibrium in which rotation or wind shear is added, allowing us to simulate tropical cyclones or squall lines. The simulations capture the robust aspects of mesoscale isotopic variations in observed tropical cyclones and squall lines. We interpret these variations using a simple water budget model for the sub‐cloud layer of different parts of the domain. We find that rain evaporation and rain‐vapor diffusive exchanges are the main drivers of isotopic depletion within tropical cyclones and squall lines. Horizontal advection spreads isotopic anomalies, thus reshaping the mesoscale isotopic pattern. This study contributes to our understanding of mesoscale isotopic variability and provides physical arguments supporting the interpretation of paleoclimate isotopic archives in tropical regions in terms of past cyclonic activity.
-
Abstract Rapidly changing climate is disrupting the High Arctic's water systems. As tracers of hydrological processes, stable water isotopes can be used for high quality monitoring of Arctic waters to better reconstruct past changes and assess future environmental threats. However, logistical challenges typically limit the length and scope of isotopic monitoring in High Arctic landscapes. Here, we present a comprehensive isotopic survey of 535 water samples taken in 2018 and 2019 of the lakes and other surface waters of the periglacial Pituffik Peninsula in far northwest Greenland. The
δ 18O,δ 2H, and deuterium‐excess values of these samples, representing 196 unique sites, grant unprecedented insight into the environmental drivers of the regional hydrology and water isotopic variability. We find that the spatial variability of lake water isotopes can best be explained through evaporation and the hydrological ability of a lake to replace evaporative water losses with precipitation and snowmelt. Temporally, summer‐long evaporation can drive lake water isotopes beyond the isotopic range observed in precipitation, and wide interannual changes in lake water isotopes reflect annual weather differences that influenced evaporation. Following this, water isotope samples taken at individual times or sites in similar periglacial landscapes may have limited regional representativeness, and increasing the spatiotemporal extent of isotopic sampling is critical to producing accurate and informative High Arctic paleoclimate reconstructions. Overall, our survey highlights the diversity of isotopic compositions in Pituffik surface waters, and our complete isotopic and geospatial database provides a strong foundation for future researchers to study hydrological changes at Pituffik and across the Arctic. -
Stable isotope ratios of hydrogen and oxygen have been applied to water cycle research for over 60 years. Over the past two decades, however, new data, data compilations, and quantitative methods have supported the application of isotopic data to address large-scale water cycle problems. Recent results have demonstrated the impact of climate variation on atmospheric water cycling, provided constraints on continental- to global-scale land-atmosphere water vapor fluxes, revealed biases in the sources of runoff in hydrological models, and illustrated regional patterns of water use and management by people. In the past decade, global isotopic observations have spurred new debate over the role of soils in the water cycle, with potential to impact both ecological and hydrological theory. Many components of the water cycle remain underrepresented in isotopic databases. Increasing accessibility of analyses and improved platforms for data sharing will refine and grow the breadth of these contributions in the future. ▪ Isotope ratios in water integrate information on hydrological processes over scales from cities to the globe. ▪ Tracing water with isotopes helps reveal the processes that govern variability in the water cycle and may govern future global changes. ▪ Improvements in instrumentation, data sharing, and quantitative analysis have advanced isotopic water cycle science over the past 20 years.more » « less
-
The Mantaro River Basin is one of the most important regions in the central Peruvian Andes in terms of hydropower generation and agricultural production. Contributions to better understanding of the climate and hydrological dynamics are vital for this region and constitute key information to support regional water security and socioeconomic resilience. This study presents eight years of monthly isotopic precipitation information (δ18O, Dxs) collected in the Mantaro River Basin. The isotopic signals were evaluated in terms of moisture sources, including local and regional climatic parameters, to interpret their variability at monthly and interannual timescales. It is proposed that the degree of rainout upstream and the transport history of air masses, also related to regional atmospheric features, are the main factors influencing the δ18O variability. Moreover, significant correlations with precipitation amount and relative humidity imply that local processes in this region of the Andes also exert important control over isotopic variability. Two extreme regional climate events (the 2010 drought and the 2017 coastal El Niño) were evaluated to determine how regional atmospheric circulation affects the rainfall isotope variability. Based on these results, recommendations for hydroclimate studies and paleoclimate reconstructions are proposed in the context of the Mantaro River Basin. This study intends to encourage new applications considering geochemical evidence for hydrological studies over the central Andean region.more » « less