skip to main content


Search for: All records

Creators/Authors contains: "Nussinov, Zohar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Advancing a microscopic framework that rigorously unveils the underlying topological hallmarks of fractional quantum Hall (FQH) fluids is a prerequisite for making progress in the classification of strongly-coupled topological matter. We present a second-quantization framework that reveals an exact fusion mechanism for particle fractionalization in FQH fluids, and uncovers the fundamental structure behind the condensation of non-local operators characterizing topological order in the lowest-Landau-level. We show the first exact analytic computation of the quasielectron Berry connections leading to its fractional charge and exchange statistics, and perform Monte Carlo simulations that numerically confirm the fusion mechanism for quasiparticles. We express the sequence of (bosonic and fermionic) Laughlin second-quantized states, highlighting the lack of local condensation, and present a rigorous constructive subspace bosonization dictionary for the bulk fluid. Finally, we establish universal long-distance behavior of edge excitations by formulating a conjecture based on the DNA, or root state, of the FQH fluid.

     
    more » « less
  2. Abstract

    The quality of network clustering is often measured in terms of a commonly used metric known as “modularity”. Modularity compares the clusters found in a network to those present in a random graph (a “null model”). Unfortunately, modularity is somewhat ill suited for studying spatially embedded networks, since a random graph contains no basic geometrical notions. Regardless of their distance, the null model assigns a nonzero probability for an edge to appear between any pair of nodes. Here, we propose a variant of modularity that does not rely on the use of a null model. To demonstrate the essentials of our method, we analyze networks generated from granular ensemble. We show that our method performs better than the most commonly used Newman-Girvan (NG) modularity in detecting the best (physically transparent) partitions in those systems. Our measure further properly detects hierarchical structures, whenever these are present.

     
    more » « less