skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "O'Donnell, Megan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. National Science Foundation (NSF) funded Engineering Research Centers (ERC) are required to develop and implement education and outreach opportunities related to their core technical research topics to broaden participation in engineering and create partnerships between industry and academia. Additionally, ERCs must include an independent evaluation of their education and outreach programming to assess their performance and impacts. To date, each ERC’s evaluation team designs its instruments/tools and protocols for evaluation, resulting in idiosyncratic and redundant efforts. Nonetheless, there is much overlap among the evaluation topics, concepts, and practices, suggesting that the ERC evaluation and assessment community might benefit from having a common set of instruments and protocols. ERCs’ efforts could then be better spent developing more specific, sophisticated, and time-intensive evaluation tools to deepen and enrich the overall ERC evaluation efforts. The implementation of such a suite of instruments would further allow each ERC to compare its efforts to those across other ERCs as one data point for assessing its effectiveness and informing its improvement efforts. Members of a multi-ERC collaborative team, funded by the NSF, have been leading a project developing a suite of common instruments and protocols which contains both quantitative and qualitative tools. This paper reports on the development of a set of qualitative instruments that, to date, includes the following: (a) a set of interview/focus group protocols intended for various groups of ERC personnel, centered around five common topics/areas, and (b) rubrics for summer program participants' verbal poster/presentations and their written poster/slide deck presentation artifacts. The development process is described sequentially, beginning with a review of relevant literature and existing instruments, followed by the creation of an initial set of interview questions and rubric criteria. The initial versions of the tools were then pilot-tested with multiple ERCs. Feedback sessions with education/evaluation leaders of those piloting ERCs were then conducted, through which further revision efforts were made. 
    more » « less
  2. In the next 50 years, the rise of computing and artificial intelligence (AI) will transform our society and it is clear that students will be forced to engage with AI in their careers. Currently, the United States does not have the infrastructure or capacity in place to support the teaching of AI in the K-12 curriculum. To deal with the above challenges, we introduce the use of visual media as a key bridge technology to engage students in grades 6-8 with AI topics, through a recently NSF funded ITEST program, labeled ImageSTEAM. Specifically, we focus on the idea of a computational camera, which rethinks the sensing interface between the physical world and intelligent machines, and enables students to ponder how sensors and perception fundamentally will augment science and technology in the future. Our 1st set of workshops (summer 2021) with teachers and students were conducted virtually due to recent pandemic, and the results and experiences will be shared and discussed in the conference. 
    more » « less
  3. Due to the COVID-19 crisis preventing face-to-face interaction, three National Science Foundation (NSF)-funded centers employed a virtual/remote format for their summer Research Experiences for Teachers (RET) Programs, reaching K-12 STEM teachers across the country. Teachers participated virtually from four different states by joining engineering research teams from four different universities in three different RET programs. Lab experiences depended on the nature of the research and institution-specific guidelines for in-lab efforts, resulting in some teachers conducting lab experiments with materials sent directly to their homes, some completing their experience fully online, and some completing portions of lab work in person on campus. Each teacher developed an engineering lesson plan based on the corresponding center’s research to be implemented either in person or virtually during the 2020-2021 academic school year. Research posters, created with support from graduate student and faculty mentors, were presented to industry partners, education partners, center members, and the NSF. Support for the teachers as they implement lessons, present posters, and disseminate their developed curricula, has continued throughout the year. Common survey and interview/focus group protocols, previously designed specifically for measuring the impact of engineering education programs, were adapted and used to separately evaluate each of the three virtual programs. Strengths and suggested areas of improvement will be explored and discussed to inform future use of the common evaluation instruments. Additionally, preliminary results, highlighting general successes and challenges of shifting RET programming to a virtual/remote format across the three centers, will be discussed. 
    more » « less
  4. The Engineering Research Centers (ERCs), funded by the National Science Foundation (NSF), play an important role in improving engineering education, bridging engineering academia and broad communities, and promoting a culture of diversity and inclusion. Each ERC must partner with an independent evaluation team to annually assess their performance and impact on progressing education, connecting community, and building diversified culture. This evaluation is currently performed independently (and in isolation), which leads to inconsistent evaluations and a redundant investment of ERCs’ resources into such tasks (e.g. developing evaluation instruments). These isolated efforts by ERCs to quantitatively evaluate their education programs also typically lack adequate sample size within a single center, which limits the validity and reliability of the quantitative analyses. Three ERCs, all associated with a large southwest university in the United States, worked collaboratively to overcome sample size and measure inconsistency concerns by developing a common quantitative instrument that is capable of evaluating any ERC’s education and diversity impacts. The instrument is the result of a systematic process with comparing and contrasting each ERC’s existing evaluation tools, including surveys and interview protocols. This new, streamlined tool captures participants’ overall experience as part of the ERC by measuring various constructs including skillset development, perception of diversity and inclusion, future plans after participating in the ERC, and mentorship received from the ERC. Scales and embedded items were designed broadly for possible use with both yearlong (e.g. graduate and undergraduate student, and postdoctoral scholars) and summer program (Research Experience for Undergraduates, Research Experience for Teachers, and Young Scholar Program) participants. The instrument was distributed and tested during Summer 2019 with participants in the summer programs from all three ERCs. The forthcoming paper will present the new common cross-ERC evaluation instrument, demonstrate the effort of collecting data across all three ERCs, present preliminary findings, and discuss collaborative processes and challenges. The preliminary implication for this work is the ability to directly compare educational programs across ERCs. The authors also believe that this tool can provide a fast start for new ERCs on how to evaluate their educational programs. 
    more » « less
  5. This Innovative Practice Work in Progress paper presents the collaborative efforts made by three NSF-funded Engineering Research Centers (ERCs) to synthesize common tools for educational program evaluation. The aim of the NSF ERCs is to achieve transformative changes by integrating engineering research and education with technological innovation within areas at the frontiers of science and engineering (e.g., NSF's 10 Big Ideas). Such centers across the nation study and innovate within their technical area using similar structures and implementation strategies, including the coordination of educational endeavors. Independent partners are enlisted as part of these centers to evaluate education and diversity impacts annually. Each center typically performs this task in isolation from other such centers. The effort required to create resources for such evaluation outcome can result in redundancy and an inability for psychometric analysis due to small available populations within a single center. This paper elaborates on the ongoing efforts of this collaborative research aimed at addressing these issues by creating a streamlined, customizable, and standardized set of evaluation instruments that can be applied to any ERC evaluation. 
    more » « less