Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Recent observations with JWST have uncovered unexpectedly high cosmic star formation activity in the early Universe, mere hundreds of millions of years after the big bang. These observations are often understood to reflect an evolutionary shift in star formation efficiency (SFE) caused by changing galactic conditions during these early epochs. We present FIREbox$$^{\it HR}$$, a high-resolution, cosmological hydrodynamical simulation from the Feedback in Realistic Environments (FIRE) project, which offers insights into the SFE of galaxies during the first billion years of cosmic time. FIREbox$$^{\it HR}$$ re-simulates the cosmic volume ($L=22.1$ cMpc) of the original FIREbox run with eight times higher mass resolution ($$m_{\rm b}\sim {}7800\, M_\odot$$), but with identical physics, down to $$z\sim {}6$$. FIREbox$$^{\it HR}$$ predicts ultraviolet (UV) luminosity functions in good agreement with available observational data. The simulation also successfully reproduces the observed cosmic UV luminosity density at $$z\sim {}6{\!-\!}14$$, demonstrating that relatively high star formation activity in the early Universe is a natural outcome of the baryonic processes encoded in the FIRE-2 model. According to FIREbox$$^{\it HR}$$, the SFE–halo mass relation for intermediate mass haloes ($$M_{\rm halo}\sim {}10^9{\!-\!}10^{11}\, {\rm M}_\odot$$) does not significantly evolve with redshift and is only weakly mass-dependent. These properties of the SFE–halo mass relation lead to a larger contribution from lower mass haloes at higher z, driving the gradual evolution of the observed cosmic UV luminosity density. A theoretical model based on the SFE–halo mass relation inferred from FIREbox$$^{\it HR}$$ allows us to explore implications for galaxy evolution. Future observations of UV faint galaxies at $$z\gt 12$$ will provide an opportunity to further test these predictions and deepen our understanding of star formation during Cosmic Dawn.more » « less
-
Abstract The James Webb Space Telescope is revealing a new population of dust-reddened broad-line active galactic nuclei (AGN) at redshiftsz≳ 5. Here we present deep NIRSpec/Prism spectroscopy from the Cycle 1 Treasury program Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization (UNCOVER) of 15 AGN candidates selected to be compact, with red continua in the rest-frame optical but with blue slopes in the UV. From NIRCam photometry alone, they could have been dominated by dusty star formation or an AGN. Here we show that the majority of the compact red sources in UNCOVER are dust-reddened AGN: 60% show definitive evidence for broad-line Hαwith a FWHM > 2000 km s−1, 20% of the current data are inconclusive, and 20% are brown dwarf stars. We propose an updated photometric criterion to select redz> 5 AGN that excludes brown dwarfs and is expected to yield >80% AGN. Remarkably, among allzphot> 5 galaxies with F277W – F444W > 1 in UNCOVER at least 33% are AGN regardless of compactness, climbing to at least 80% AGN for sources with F277W – F444W > 1.6. The confirmed AGN have black hole masses of 107–109M⊙. While their UV luminosities (−16 >MUV> −20 AB mag) are low compared to UV-selected AGN at these epochs, consistent with percent-level scattered AGN light or low levels of unobscured star formation, the inferred bolometric luminosities are typical of 107–109M⊙black holes radiating at ∼10%–40% the Eddington limit. The number densities are surprisingly high at ∼10−5Mpc−3mag−1, 100 times more common than the faintest UV-selected quasars, while accounting for ∼1% of the UV-selected galaxies. While their UV faintness suggests they may not contribute strongly to reionization, their ubiquity poses challenges to models of black hole growth.more » « less
-
Abstract The James Webb Space Telescope is now detecting early black holes (BHs) as they transition from “seeds” to supermassive BHs. Recently, Bogdan et al. reported the detection of an X-ray luminous supermassive BH, UHZ-1, with a photometric redshift atz> 10. Such an extreme source at this very high redshift provides new insights on seeding and growth models for BHs given the short time available for formation and growth. Harnessing the exquisite sensitivity of JWST/NIRSpec, here we report the spectroscopic confirmation of UHZ-1 atz= 10.073 ± 0.002. We find that the NIRSpec/Prism spectrum is typical of recently discoveredz≈ 10 galaxies, characterized primarily by star formation features. We see no clear evidence of the powerful X-ray source in the rest-frame UV/optical spectrum, which may suggest heavy obscuration of the central BH, in line with the Compton-thick column density measured in the X-rays. We perform a stellar population fit simultaneously to the new NIRSpec spectroscopy and previously available photometry. The fit yields a stellar-mass estimate for the host galaxy that is significantly better constrained than prior photometric estimates ( M⊙). Given the predicted BH mass (MBH∼ 107–108M⊙), the resulting ratio ofMBH/M⋆remains 2 to 3 orders of magnitude higher than local values, thus lending support to the heavy seeding channel for the formation of supermassive BHs within the first billion years of cosmic evolution.more » « less