skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Oh, Minah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract We study the mixed formulation of the abstract Hodge Laplacian on axisymmetric domains with general data through Fourier finite element methods (Fourier-FEMs) in weighted function spaces. Closed Hilbert complexes and commuting projectors are used as in the work of Arnold, Falk & Winther, (2010, Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.), 47, 281–354), by using the new family of finite element spaces for general axisymmetric problems introduced in Oh, (2015, de Rham complexes arising from Fourier-FEMs in axisymmetric domains. Comput. Math. Appl., 70, 2063–2073). In order to get stability results and error estimates for the discrete mixed formulation, we construct commuting projectors that can be applied to functions with low regularity. 
    more » « less
  2. We investigate a P1 finite element method for a two-dimensional weighted optimal control problem arising from a three-dimensional axisymmetric elliptic state-constrained optimal control problem with Dirichlet boundary conditions. 
    more » « less
  3. We investigate two $$P_1$$ finite element methods for an elliptic state-constrained distributed optimal control problem with Neumann boundary conditions on general polygonal domains. 
    more » « less