skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Hodge Laplacian on axisymmetric domains and its discretization
Abstract We study the mixed formulation of the abstract Hodge Laplacian on axisymmetric domains with general data through Fourier finite element methods (Fourier-FEMs) in weighted function spaces. Closed Hilbert complexes and commuting projectors are used as in the work of Arnold, Falk & Winther, (2010, Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.), 47, 281–354), by using the new family of finite element spaces for general axisymmetric problems introduced in Oh, (2015, de Rham complexes arising from Fourier-FEMs in axisymmetric domains. Comput. Math. Appl., 70, 2063–2073). In order to get stability results and error estimates for the discrete mixed formulation, we construct commuting projectors that can be applied to functions with low regularity.  more » « less
Award ID(s):
1913050
PAR ID:
10251450
Author(s) / Creator(s):
Date Published:
Journal Name:
IMA Journal of Numerical Analysis
Volume:
41
Issue:
2
ISSN:
0272-4979
Page Range / eLocation ID:
1569 to 1607
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We construct conforming finite element elasticity complexes on Worsey–Farin splits in three dimensions. Spaces for displacement, strain, stress, and the load are connected in the elasticity complex through the differential operators representing deformation, incompatibility, and divergence. For each of these component spaces, a corresponding finite element space on Worsey–Farin meshes is exhibited. Unisolvent degrees of freedom are developed for these finite elements, which also yields commuting (cochain) projections on smooth functions. A distinctive feature of the spaces in these complexes is the lack of extrinsic supersmoothness at subsimplices of the mesh. Notably, the complex yields the first (strongly) symmetric stress finite element with no vertex or edge degrees of freedom in three dimensions. Moreover, the lowest order stress space uses only piecewise linear functions which is the lowest feasible polynomial degree for the stress space. 
    more » « less
  2. Abstract The paper introduces a finite element method for an Eulerian formulation of partial differential equations governing the transport and diffusion of a scalar quantity in a time-dependent domain. The method follows the idea from[C. Lehrenfeld and M. Olshanskii,An Eulerian finite element method for PDEs in time-dependent domains,ESAIM Math. Model. Numer. Anal. 53 2019, 2, 585–614]of a solution extension to realise the Eulerian time-stepping scheme. However, a reformulation of the partial differential equation is suggested to derive a scheme which conserves the quantity under consideration exactly on the discrete level. For the spatial discretisation, the paper considers an unfitted finite element method. Ghost-penalty stabilisation is used to realise the discrete solution extension and gives a scheme robust against arbitrary intersections between the mesh and geometry interface. The stability is analysed for both first- and second-order backward differentiation formula versions of the scheme. Several numerical examples in two and three spatial dimensions are included to illustrate the potential of this method. 
    more » « less
  3. Abstract We prove a mixed version of a conjecture of Griffiths: that the closure of the image of any admissible mixed period map is quasi-projective, with a natural ample bundle. Specifically, we consider the map from the image of the mixed period map to the image of the period map of the associated graded. On the one hand, we show in a precise manner that the parts of this map parametrizing extension data of non-adjacent-weight pure Hodge structures are quasi-affine. On the other hand, extensions of adjacent-weight pure polarized Hodge structures are parametrized by a compact complex torus (the intermediate Jacobian) equipped with a natural theta bundle which is ample in Griffiths transverse directions.Our proof makes heavy use of o-minimality, and recent work with B. Klingler associating an an , exp {\mathbb{R}_{\mathrm{an},\exp}}-definable structure to mixed period domains and admissible mixed period maps. 
    more » « less
  4. We develop a mixed finite element method for the coupled problem arising in the interaction between a free fluid governed by the Stokes equations and flow in deformable porous medium modeled by the Biot system of poroelasticity. Mass conservation, balance of stress, and the Beavers–Joseph–Saffman condition are imposed on the interface. We consider a fully mixed Biot formulation based on a weakly symmetric stress-displacement-rotation elasticity system and Darcy velocity-pressure flow formulation. A velocity-pressure formulation is used for the Stokes equations. The interface conditions are incorporated through the introduction of the traces of the structure velocity and the Darcy pressure as Lagrange multipliers. Existence and uniqueness of a solution are established for the continuous weak formulation. Stability and error estimates are derived for the semi-discrete continuous-in-time mixed finite element approximation. Numerical experiments are presented to verify the theoretical results and illustrate the robustness of the method with respect to the physical parameters. 
    more » « less
  5. We introduce the family of trimmed serendipity finite element differential form spaces, defined on cubical meshes in any number of dimensions, for any polynomial degree, and for any form order. The relation between the trimmed serendipity family and the (non-trimmed) serendipity family developed by Arnold and Awanou [Math. Comp. 83(288) 2014] is analogous to the relation between the trimmed and (non-trimmed) polynomial finite element differential form families on simplicial meshes from finite element exterior calculus. We provide degrees of freedom in the general setting and prove that they are unisolvent for the trimmed serendipity spaces. The sequence of trimmed serendipity spaces with a fixed polynomial order r provides an explicit example of a system described by Christiansen and Gillette [ESAIM:M2AN 50(3) 2016], namely, a minimal compatible finite element system on squares or cubes containing order r-1 polynomial differential forms. 
    more » « less