skip to main content


Search for: All records

Creators/Authors contains: "Oh, Se Eun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent website fingerprinting attacks have been shown to achieve very high performance against traffic through Tor. These attacks allow an adversary to deduce the website a Tor user has visited by simply eavesdropping on the encrypted communication. This has consequently motivated the development of many defense strategies that obfuscate traffic through the addition of dummy packets and/or delays. The efficacy and practicality of many of these recent proposals have yet to be scrutinized in detail. In this study, we re-evaluate nine recent defense proposals that claim to provide adequate security with low-overheads using the latest Deep Learning-based attacks. Furthermore, we assess the feasibility of implementing these defenses within the current confines of Tor. To this end, we additionally provide the first on-network implementation of the DynaFlow defense to better assess its real-world utility. 
    more » « less
  2. Recent website fingerprinting attacks have been shown to achieve very high performance against traffic through Tor. These attacks allow an adversary to deduce the website a Tor user has visited by simply eavesdropping on the encrypted communication. This has consequently motivated the development of many defense strategies that obfuscate traffic through the addition of dummy packets and/or delays. The efficacy and practicality of many of these recent proposals have yet to be scrutinized in detail. In this study, we re-evaluate nine recent defense proposals that claim to provide adequate security with low-overheads using the latest Deep Learning-based attacks. Furthermore, we assess the feasibility of implementing these defenses within the current confines of Tor. To this end, we additionally provide the first on-network implementation of the DynaFlow defense to better assess its real-world utility. 
    more » « less
  3. End-to-end flow correlation attacks are among the oldest known attacks on low-latency anonymity networks, and are treated as a core primitive for traffic analysis of Tor. However, despite recent work showing that individual flows can be correlated with high accuracy, the impact of even these state-of-the-art attacks is questionable due to a central drawback: their pairwise nature, requiring comparison between N2 pairs of flows to deanonymize N users. This results in a combinatorial explosion in computational requirements and an asymptotically declining base rate, leading to either high numbers of false positives or vanishingly small rates of successful correlation. In this paper, we introduce a novel flow correlation attack, DeepCoFFEA, that combines two ideas to overcome these drawbacks. First, DeepCoFFEA uses deep learning to train a pair of feature embedding networks that respectively map Tor and exit flows into a single low-dimensional space where correlated flows are similar; pairs of embedded flows can be compared at lower cost than pairs of full traces. Second, DeepCoFFEA uses amplification, dividing flows into short windows and using voting across these windows to significantly reduce false positives; the same embedding networks can be used with an increasing number of windows to independently lower the false positive rate. We conduct a comprehensive experimental analysis showing that DeepCoFFEA significantly outperforms state-of-the-art flow correlation attacks on Tor, e.g. 93% true positive rate versus at most 13% when tuned for high precision, with two orders of magnitude speedup over prior work. We also consider the effects of several potential countermeasures on DeepCoFFEA, finding that existing lightweight defenses are not sufficient to secure anonymity networks from this threat. 
    more » « less
  4. null (Ed.)
    Abstract We introduce Generative Adversarial Networks for Data-Limited Fingerprinting (GANDaLF), a new deep-learning-based technique to perform Website Fingerprinting (WF) on Tor traffic. In contrast to most earlier work on deep-learning for WF, GANDaLF is intended to work with few training samples, and achieves this goal through the use of a Generative Adversarial Network to generate a large set of “fake” data that helps to train a deep neural network in distinguishing between classes of actual training data. We evaluate GANDaLF in low-data scenarios including as few as 10 training instances per site, and in multiple settings, including fingerprinting of website index pages and fingerprinting of non-index pages within a site. GANDaLF achieves closed-world accuracy of 87% with just 20 instances per site (and 100 sites) in standard WF settings. In particular, GANDaLF can outperform Var-CNN and Triplet Fingerprinting (TF) across all settings in subpage fingerprinting. For example, GANDaLF outperforms TF by a 29% margin and Var-CNN by 38% for training sets using 20 instances per site. 
    more » « less
  5. Abstract Recent advances in Deep Neural Network (DNN) architectures have received a great deal of attention due to their ability to outperform state-of-the-art machine learning techniques across a wide range of application, as well as automating the feature engineering process. In this paper, we broadly study the applicability of deep learning to website fingerprinting. First, we show that unsupervised DNNs can generate lowdimensional informative features that improve the performance of state-of-the-art website fingerprinting attacks. Second, when used as classifiers, we show that they can exceed performance of existing attacks across a range of application scenarios, including fingerprinting Tor website traces, fingerprinting search engine queries over Tor, defeating fingerprinting defenses, and fingerprinting TLS-encrypted websites. Finally, we investigate which site-level features of a website influence its fingerprintability by DNNs. 
    more » « less