The website fingerprinting attack allows a low-resource attacker to compromise the privacy guarantees provided by privacy enhancing tools such as Tor. In response, researchers have proposed defenses aimed at confusing the classification tools used by attackers. As new, more powerful attacks are frequently developed, raw attack accuracy has proven inadequate as the sole metric used to evaluate these defenses. In response, two security metrics have been proposed that allow for evaluating defenses based on hand-crafted features often used in attacks. Recent state-of-the-art attacks, however, use deep learning models capable of automatically learning abstract feature representations, and thus the proposed metrics fall short once again. In this study we examine two security metrics and (1) show how these methods can be extended to evaluate deep learning-based website fingerprinting attacks, and (2) compare the security metrics and identify their shortcomings.
more »
« less
p1-FP: Extraction, Classification, and Prediction of Website Fingerprints with Deep Learning
Abstract Recent advances in Deep Neural Network (DNN) architectures have received a great deal of attention due to their ability to outperform state-of-the-art machine learning techniques across a wide range of application, as well as automating the feature engineering process. In this paper, we broadly study the applicability of deep learning to website fingerprinting. First, we show that unsupervised DNNs can generate lowdimensional informative features that improve the performance of state-of-the-art website fingerprinting attacks. Second, when used as classifiers, we show that they can exceed performance of existing attacks across a range of application scenarios, including fingerprinting Tor website traces, fingerprinting search engine queries over Tor, defeating fingerprinting defenses, and fingerprinting TLS-encrypted websites. Finally, we investigate which site-level features of a website influence its fingerprintability by DNNs.
more »
« less
- Award ID(s):
- 1815757
- NSF-PAR ID:
- 10107896
- Date Published:
- Journal Name:
- Proceedings on Privacy Enhancing Technologies
- Volume:
- 2019
- Issue:
- 3
- ISSN:
- 2299-0984
- Page Range / eLocation ID:
- 191 to 209
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Over 8 million users rely on the Tor network each day to protect their anonymity online. Unfortunately, Tor has been shown to be vulnerable to the website fingerprinting attack, which allows an attacker to deduce the website a user is visiting based on patterns in their traffic. The state-of-the-art attacks leverage deep learning to achieve high classification accuracy using raw packet information. Work thus far, however, has examined only one type of media delivered over the Tor network: web pages, and mostly just home pages of sites. In this work, we instead investigate the fingerprintability of video content served over Tor. We collected a large new dataset of network traces for 50 YouTube videos of similar length. Our preliminary experiments utilizing a convolutional neural network model proposed in prior works has yielded promising classification results, achieving up to 55% accuracy. This shows the potential to unmask the individual videos that users are viewing over Tor, creating further privacy challenges to consider when defending against website fingerprinting attacks.more » « less
-
The Tor anonymity system is vulnerable to website fingerprinting attacks that can reveal users Internet browsing behavior. The state-of-the-art website fingerprinting attacks use convolutional neural networks to automatically extract features from packet traces. One such attack undermines an efficient fingerprinting defense previously considered a candidate for implementation in Tor. In this work, we study the use of neural network attribution techniques to visualize activity in the attack's model. These visualizations, essentially heatmaps of the network, can be used to identify regions of particular sensitivity and provide insight into the features that the model has learned. We then examine how these heatmaps may be used to create a new website fingerprinting defense that applies random padding to the website trace with an emphasis towards highly fingerprintable regions. This defense reduces the attacker's accuracy from 98% to below 70% with a packet overhead of approximately 80%.more » « less
-
Abstract The popularity of Tor has made it an attractive target for a variety of deanonymization and fingerprinting attacks. Location-based path selection algorithms have been proposed as a countermeasure to defend against such attacks. However, adversaries can exploit the location-awareness of these algorithms by strategically placing relays in locations that increase their chances of being selected as a client’s guard. Being chosen as a guard facilitates website fingerprinting and traffic correlation attacks over extended time periods. In this work, we rigorously define and analyze the guard placement attack . We present novel guard placement attacks and show that three state-of-the-art path selection algorithms—Counter-RAPTOR, DeNASA, and LASTor—are vulnerable to these attacks, overcoming defenses considered by all three systems. For instance, in one attack, we show that an adversary contributing only 0.216% of Tor’s total bandwidth can attain an average selection probability of 18.22%, 84× higher than what it would be under Tor currently. Our findings indicate that existing location-based path selection algorithms allow guards to achieve disproportionately high selection probabilities relative to the cost required to run the guard. Finally, we propose and evaluate a generic defense mechanism that provably defends any path selection algorithm against guard placement attacks. We run our defense mechanism on each of the three path selection algorithms, and find that our mechanism significantly enhances the security of these algorithms against guard placement attacks with only minimal impact to the goals or performance of the original algorithms.more » « less
-
Website Fingerprinting (WF) is a traffic analysis attack that enables an eavesdropper to infer the victim's web activity even when encrypted and even when using the Tor anonymity system. Using deep learning classifiers, the attack can reach up to 98% accuracy. Existing WF defenses are either too expensive in terms of bandwidth and latency overheads (e.g. 2-3 times as large or slow) or ineffective against the latest attacks. In this work, we explore a novel defense based on the idea of adversarial examples that have been shown to undermine machine learning classifiers in other domains. Our Adversarial Traces defense adds padding to a Tor traffic trace in a manner that reliably fools the classifier into classifying it as coming from a different site. The technique drops the accuracy of the state-of-the-art attack from 98% to 60%, while incurring a reasonable 47% bandwidth overhead, showing its promise as a possible defense for Tor.more » « less