skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Oliveira, Orlando"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A three‐component synthesis methodology is described for the formation of covalent organic frameworks (COFs) containing extended aromatics. Notably, this approach enables synthesis of the building blocks and COF along parallel reaction landscapes, on a similar timeframe. The use of fragmental building block components, namely pyrene dione diboronic acid as aggregation‐inducing COF precursor and the diamineso‐phenylenediamine (Ph), 2,3‐diaminonaphthalene (Naph), or (1R,2R)‐(+)‐1,2‐diphenylethylenediamine (2Ph) as extending functionalization units in conjunction with 2,3,6,7,10,11‐hexahydroxytriphenylene, resulted in the formation of the corresponding pyrene‐fused azaacene, i.e., Aza‐COF series with full conversion of the dione moiety, long‐range order, and high surface area. In addition, the novel three‐component synthesis was successfully applied to produce highly crystalline, oriented thin films of the Aza‐COFs with nanostructured surfaces on various substrates. The Aza‐COFs exhibit light absorption maxima in the blue spectral region, and each Aza‐COF presents a distinct photoluminescence profile. Transient absorption measurements of Aza‐Ph‐ and Aza‐Naph‐COFs suggest ultrafast relaxation dynamics of excited‐states within these COFs. 
    more » « less