Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this study, we infer genus-level relationships within shrikes (Laniidae), crows (Corvidae), and their allies using ultraconserved elements (UCEs). We confirm previous results of the Crested Shrikejay (Platylophus galericulatus) as comprising its own taxonomic family and find strong support for its sister relationship to laniid shrikes. We also find strong support that the African-endemic genus Eurocephalus, which comprises two allopatric species (E. ruppelli and E. anguitimens), are not “true-shrikes”. We propose elevating the white-crowned shrikes to their own family, Eurocephalidae.more » « less
-
Abstract The complex island archipelagoes of Wallacea and Melanesia have provided empirical data behind integral theories in evolutionary biology, including allopatric speciation and island biogeography. Yet, questions regarding the relative impact of the layered biogeographic barriers, such as deep-water trenches and isolated island systems, on faunal diversification remain underexplored. One such barrier is Wallace’s Line, a significant biogeographic boundary that largely separates Australian and Asian biodiversity. To assess the relative roles of biogeographic barriers—specifically isolated island systems and Wallace’s Line—we investigated the tempo and mode of diversification in a diverse avian radiation, Corvides (Crows and Jays, Birds-of-paradise, Vangas, and allies). We combined a genus-level data set of thousands of ultraconserved elements (UCEs) and a species-level, 12-gene Sanger sequence matrix to produce a well-resolved supermatrix tree that we leveraged to explore the group’s historical biogeography and the effects of the biogeographic barriers on their macroevolutionary dynamics. The tree is well resolved and differs substantially from what has been used extensively for past comparative analyses within this group. We confirmed that Corvides, and its major constituent clades, arose in Australia and that a burst of dispersals west across Wallace’s Line occurred after the uplift of Wallacea during the mid-Miocene. We found that dispersal across this biogeographic barrier was generally rare, though westward dispersals were two times more frequent than eastward dispersals. Wallacea’s central position between Sundaland and Sahul no doubt acted as a bridge for island-hopping dispersal out of Australia, across Wallace’s Line, to colonize the rest of Earth. In addition, we found that the complex island archipelagoes east of Wallace’s Line harbor the highest rates of net diversification and are a substantial source of colonists to continental systems on both sides of this biogeographic barrier. Our results support emerging evidence that island systems, particularly the geologically complex archipelagoes of the Indo-pacific, are drivers of species diversification. [Historical biogeography; island biogeography; Melanesia; molecular phylogenetics; state-dependent diversification and extinction.]more » « less
-
It has long been appreciated that analyses of genomic data (e.g., whole genome sequencing or sequence capture) have the potential to reveal the tree of life, but it remains challenging to move from sequence data to a clear understanding of evolutionary history, in part due to the computational challenges of phylogenetic estimation using genome-scale data. Supertree methods solve that challenge because they facilitate a divide-and-conquer approach for large-scale phylogeny inference by integrating smaller subtrees in a computationally efficient manner. Here, we combined information from sequence capture and whole-genome phylogenies using supertree methods. However, the available phylogenomic trees had limited overlap so we used taxon-rich (but not phylogenomic) megaphylogenies to weave them together. This allowed us to construct a phylogenomic supertree, with support values, that included 707 bird species (~7% of avian species diversity). We estimated branch lengths using mitochondrial sequence data and we used these branch lengths to estimate divergence times. Our time-calibrated supertree supports radiation of all three major avian clades (Palaeognathae, Galloanseres, and Neoaves) near the Cretaceous-Paleogene (K-Pg) boundary. The approach we used will permit the continued addition of taxa to this supertree as new phylogenomic data are published, and it could be applied to other taxa as well.more » « less
-
Avian diversification has been influenced by global climate change, plate tectonic movements, and mass extinction events. However, the impact of these factors on the diversification of the hyperdiverse perching birds (passerines) is unclear because family level relationships are unresolved and the timing of splitting events among lineages is uncertain. We analyzed DNA data from 4,060 nuclear loci and 137 passerine families using concatenation and coalescent approaches to infer a comprehensive phylogenetic hypothesis that clarifies relationships among all passerine families. Then, we calibrated this phylogeny using 13 fossils to examine the effects of different events in Earth history on the timing and rate of passerine diversification. Our analyses reconcile passerine diversification with the fossil and geological records; suggest that passerines originated on the Australian landmass ∼47 Ma; and show that subsequent dispersal and diversification of passerines was affected by a number of climatological and geological events, such as Oligocene glaciation and inundation of the New Zealand landmass. Although passerine diversification rates fluctuated throughout the Cenozoic, we find no link between the rate of passerine diversification and Cenozoic global temperature, and our analyses show that the increases in passerine diversification rate we observe are disconnected from the colonization of new continents. Taken together, these results suggest more complex mechanisms than temperature change or ecological opportunity have controlled macroscale patterns of passerine speciation.more » « less
-
Abstract The typical owl family (Strigidae) comprises 194 species in 28 genera, 14 of which are monotypic. Relationships within and among genera in the typical owls have been challenging to discern because mitochondrial data have produced equivocal results and because many monotypic genera have been omitted from previous molecular analyses. Here, we collected and analyzed DNA sequences of ultraconserved elements (UCEs) from 43 species of typical owls to produce concatenated and multispecies coalescent-based phylogenetic hypotheses for all but one genus in the typical owl family. Our results reveal extensive paraphyly of taxonomic groups across phylogenies inferred using different analytical approaches and suggest the genera Athene, Otus, Asio, Megascops, Bubo, and Strix are paraphyletic, whereas Ninox and Glaucidium are polyphyletic. Secondary analyses of protein-coding mitochondrial genes harvested from off-target sequencing reads and mitochondrial genomes downloaded from GenBank generally support the extent of paraphyly we observe, although some disagreements exist at higher taxonomic levels between our nuclear and mitochondrial phylogenetic hypotheses. Overall, our results demonstrate the importance of taxon sampling for understanding and describing evolutionary relationships in this group, as well as the need for additional sampling, study, and taxonomic revision of typical owl species. Additionally, our findings highlight how both divergence and convergence in morphological characters have obscured our understanding of the evolutionary history of typical owls, particularly those with insular distributions.more » « less