Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Previous studies suggest that greenhouse gas-induced warming can lead to increased fine particulate matter concentrations and degraded air quality. However, significant uncertainties remain regarding the sign and magnitude of the response to warming and the underlying mechanisms. Here, we show that thirteen models from the Coupled Model Intercomparison Project Phase 6 all project an increase in global average concentrations of fine particulate matter in response to rising carbon dioxide concentrations, but the range of increase across models is wide. The two main contributors to this increase are increased abundance of dust and secondary organic aerosols via intensified West African monsoon and enhanced emissions of biogenic volatile organic compounds, respectively. Much of the inter-model spread is related to different treatment of biogenic volatile organic compounds. Our results highlight the importance of natural aerosols in degrading air quality under current warming, while also emphasizing that improved understanding of biogenic volatile organic compounds emissions due to climate change is essential for numerically assessing future air quality.more » « less
-
Abstract. For the radiative impact of individual climate forcings,most previous studies focused on the global mean values at the top of theatmosphere (TOA), and less attention has been paid to surface processes,especially for black carbon (BC) aerosols. In this study, the surface radiativeresponses to five different forcing agents were analyzed by using idealizedmodel simulations. Our analyses reveal that for greenhouse gases, solarirradiance, and scattering aerosols, the surface temperature changes aremainly dictated by the changes of surface radiative heating, but for BC,surface energy redistribution between different components plays a morecrucial role. Globally, when a unit BC forcing is imposed at TOA, the netshortwave radiation at the surface decreases by -5.87±0.67 W m−2 (W m−2)−1 (averaged over global land without Antarctica), which ispartially offset by increased downward longwave radiation (2.32±0.38 W m−2 (W m−2)−1 from the warmer atmosphere, causing a netdecrease in the incoming downward surface radiation of -3.56±0.60 W m−2 (W m−2)−1. Despite a reduction in the downward radiationenergy, the surface air temperature still increases by 0.25±0.08 Kbecause of less efficient energy dissipation, manifested by reduced surfacesensible (-2.88±0.43 W m−2 (W m−2)−1) and latent heat flux(-1.54±0.27 W m−2 (W m−2)−1), as well as a decrease inBowen ratio (-0.20±0.07 (W m−2)−1). Such reductions of turbulentfluxes can be largely explained by enhanced air stability (0.07±0.02 K (W m−2)−1), measured as the difference of the potential temperaturebetween 925 hPa and surface, and reduced surface wind speed (-0.05±0.01 m s−1 (W m−2)−1). The enhanced stability is due to the fasteratmospheric warming relative to the surface, whereas the reduced wind speedcan be partially explained by enhanced stability and reduced Equator-to-poleatmospheric temperature gradient. These rapid adjustments under BC forcingoccur in the lower atmosphere and propagate downward to influence thesurface energy redistribution and thus surface temperature response, whichis not observed under greenhouse gases or scattering aerosols. Our studyprovides new insights into the impact of absorbing aerosols on surfaceenergy balance and surface temperature response.more » « less
An official website of the United States government
